## The hidden-charm strong decays of the Z<sub>c</sub> states

arXiv:1912.12781[hep-ph]

Li-Ye Xiao(肖立叶 北京科技大学) Collaborator: Guang-juan Wang (王广娟 北京大学) Shi-Lin Zhu (朱世琳 北京大学)

# Outline

## Zc states

Experimental statusTheoretical status

## quark-exchange model

Zc(3900)
 Zc(4020)
 Zc(4430)

## Charmonium(like) spectroscopy



#### **XYZ** states production mechanisms



2020-1-11

#### Chen, Physics Reports 639,1-121(2016)

4

Experimental information of the charged charmonium-like states Zc(3900), Zc(3885), Zc(4020), Zc(4025)

| State       | M (MeV)                                              | Г (MeV)                            | Process (decay mode)                                                                                                                            |
|-------------|------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $Z_c(3900)$ | $3899.0 \pm 3.6 \pm 4.9$<br>$3894.5 \pm 6.6 \pm 4.5$ | $46 \pm 10 \pm 20$<br>63 + 24 + 26 | $e^+e^- \rightarrow Y(4260) \rightarrow \pi^- + (J/\psi \pi^+)$ BESIII<br>$e^+e^- \rightarrow Y(4260) \rightarrow \pi^- + (J/\psi \pi^+)$ Belle |
|             | $3894.5 \pm 0.0 \pm 4.5$<br>$3886 \pm 4 \pm 2$       | $37 \pm 4 \pm 8$                   | $e^+e^- \rightarrow \psi(4160) \rightarrow \pi^- + (J/\psi \pi^+)$ Xiao et al.                                                                  |
| $Z_c(3885)$ | $3882.2 \pm 1.1 \pm 1.5$                             | $26.5\pm1.7\pm2.1$                 | $e^+e^- \rightarrow Y(4260) \rightarrow \pi^- + (D\bar{D}^*)^+$ BESIII                                                                          |
| $Z_c(4020)$ | $4022.9 \pm 0.8 \pm 2.7$                             | $7.9\pm2.7\pm2.6$                  | $e^+e^- \rightarrow Y(4260) \rightarrow \pi^- + (h_c \pi^+)$ BESIII                                                                             |
| $Z_c(4025)$ | $4026.3 \pm 2.6 \pm 3.7$                             | $24.8\pm5.6\pm7.7$                 | $e^+e^- \rightarrow Y(4260) \rightarrow \pi^- + (D^*\bar{D}^*)^+$ BESIII                                                                        |

The productions and decay modes:

2020-1-11

#### **Experimential status: Zc(4430)**



M=4433±4±2 MeV

Γ=45<sup>+18</sup>-13<sup>+30</sup>-13 MeV

Babar: not seen PRD 79, 112001(2009)

## Belle: continued

The resonance parameters for the  $Z^+(4430)$  and the observed decay channels.

| Experiment               | Mass [MeV]                       | Width [MeV]               | Decay mode                                             |
|--------------------------|----------------------------------|---------------------------|--------------------------------------------------------|
|                          |                                  |                           |                                                        |
| Belle <sup>2</sup> [104] | $4443^{+15}_{-12}{}^{+19}_{-13}$ | $107^{+86+74}_{-43-56}$   | $Z^+(4430) \to \pi^+ \psi(3686)$                       |
| Belle <sup>3</sup> [106] | $4485 \pm 22^{+28}_{-11}$        | $200^{+41+26}_{-46-35}$   | $Z^{-}(4430) \rightarrow \pi^{-}\psi(3686)$ favored 1+ |
| Belle <sup>4</sup> [107] | -                                | -                         | Evidence for                                           |
|                          |                                  |                           | $Z^+(4430) \rightarrow \pi^+ J/\psi$                   |
| LHCb [108]               | $4475\pm7^{+15}_{-25}$           | $172 \pm 13^{+37}_{-34}$  | $Z^{-}(4430) \rightarrow \pi^{-}\psi(3686)$            |
|                          |                                  |                           | established 1+                                         |
| 104 PRD 80, 031101       | (2009)                           | 107 PRD 90, 112009(2014)  |                                                        |
|                          |                                  |                           | .TP=1+                                                 |
| 106 PRD 88, 074026       | 6(2013)                          | 108 PRL 112, 222002(2014) | 0 -1                                                   |

#### **Theoretical interpretations of the Zc states**

#### Zc(3900) & Zc(4020)

- > Molecular resonances:  $D\overline{D} * \& D * \overline{D} *$
- > S-wave tetraquark state assignment:  $c\overline{c}q\overline{q}$

CPC 36, 194-204(2012)

PRD 83, 034010(2011) PRD 92, 054002(2015) EPJC 74, 2773(2014)

Kinematical effects: triangle singularities, coupled channel cusp effects PRD 91, 034009(2015) and so on
PRD 84, 034032(2011)

Zc(4430)

➢ Molecular states: S-wave  $\overline{D}_1D^*$  with 0<sup>-</sup>,1<sup>-</sup>,2<sup>-</sup>
 PRD 77, 034003(2018)
 P-wave  $\overline{D}_1D^*$  or  $\overline{D}_2D^*$  with 1<sup>+</sup>
 PRD 90, 037502(2014)
 ➢ tetraquark states:  $2S cq c \overline{q}$  EPJC 58, 399-405(2008)
 S triangle singularities
 J.Phys.G 35, 075005(2008)
 arXiv:1909.03976

| TABLE I: The theoretical | predictions of $R_{Z_c(3900)}$ | in various models. |
|--------------------------|--------------------------------|--------------------|
|--------------------------|--------------------------------|--------------------|

|   | Experiment                                        | Molecular                   | Tetraquark                  |
|---|---------------------------------------------------|-----------------------------|-----------------------------|
|   | $2.2 \pm 0.9$ [43] $0.046^{+0.025}_{-0.017}$ [46] |                             | $230^{+330}_{-140}$ [46]    |
|   |                                                   | $1.78^{+0.41}_{-0.37}$ [44] | $0.27^{+0.40}_{-0.17}$ [46] |
|   |                                                   | 0.12 [47]                   | $1.86^{+0.41}_{-0.35}$ [44] |
|   |                                                   | 0.007 [45]                  | $1.28^{+0.37}_{-0.30}$ [44] |
|   |                                                   | 0.059 [51]                  | 2.2 [51]                    |
|   |                                                   | _                           | $1.08 \pm 0.88$ [49]        |
| ] | $R_{z_c(3900)} = \frac{\eta_c \rho^2}{1}$         | - = 2.2 ± 0.9               | $0.95 \pm 0.40$ [48]        |
|   | $J/\psi\pi$                                       | , <sup>±</sup>              | 0.66 [36]                   |
|   |                                                   |                             | $0.57 \pm 0.17$ [50]        |

| 36、 | PRD 87, 111102(2013)   |       |
|-----|------------------------|-------|
| 43、 | arXiv:1906.00831[hep.e | :×]   |
| 44、 | PRD94, 094017(2016)    |       |
| 45、 | PoS Hadron 2013, 189(2 | 2013) |
| 46、 | PLB 746, 194(2015)     |       |
| 47、 | EPJC 73, 2561(2013)    |       |
| 48、 | PRD 88, 016004(2013)   |       |
| 49、 | EPJC 78, 14(2018)      |       |
| 50、 | PRD 93, 074002(2016)   |       |
| 51、 | arXiv:1910.03269[hep-p | bh]   |

#### Two-body decay $\longrightarrow$ Molecualr states decay



#### The wave functions in the molecular scenario

Molecular - 
$$\begin{bmatrix} Zc(3900): D\overline{D}^* + c.c \\ Zc(4020): D^*\overline{D}^* \\ Zc(4430): D(2S)\overline{D}^* + c.c \end{bmatrix}$$



• Mesons spatial wave function: GI, PRD 32, 189(1985)

$$\phi = \sum_{1}^{n} a_{n} \phi_{n}(\vec{p}) = \sum_{1}^{n} a_{n} N_{n} (2\vec{p})^{l} \sqrt{\frac{4\pi}{(2l+1)!!}} Y_{lm}(\vec{p}) \exp^{-\frac{p^{2}}{2n\beta^{2}}}$$
$$N_{n} = (\frac{1}{\pi n\beta^{2}})^{\frac{3}{4}} (\frac{1}{2n\beta^{2}})^{-\frac{l}{2}}$$

• Relative spatial wave function:

$$\phi_r = \frac{2\exp^{-\frac{p_r^2}{2\alpha^2}}}{\pi^{\frac{1}{4}}\alpha^{\frac{3}{2}}} \qquad \sqrt{\frac{3}{2\alpha^2}} = r_{mean}$$

#### The wave functions in the tetraquark scenario

$$Tetraquark = \begin{bmatrix} Zc(3900): \frac{1}{\sqrt{2}} \left\{ \left[ [cu]_{\bar{3}_{c}}^{s=0} [\bar{c}\bar{d}]_{3_{c}}^{s=1} \right]_{1_{c}}^{s=1} + \left[ [cu]_{\bar{3}_{c}}^{s=1} [\bar{c}\bar{d}]_{3_{c}}^{s=0} \right]_{1_{c}}^{s=1} \right\}$$
$$Zc(4020): \begin{bmatrix} [cu]_{\bar{3}_{c}}^{s=1} [\bar{c}\bar{d}]_{3_{c}}^{s=1} \right]_{1_{c}}^{s=1} PLB 749, 194(2015) \text{ Ping}$$
$$Zc(4430): \frac{1}{\sqrt{2}} \left\{ \left[ [cu]_{\bar{3}_{c}}^{s=0} [\bar{c}\bar{d}]_{3_{c}}^{s=1} \right]_{1_{c}}^{s=1} + \left[ [cu]_{\bar{3}_{c}}^{s=1} [\bar{c}\bar{d}]_{3_{c}}^{s=0} \right]_{1_{c}}^{s=1} \right\}$$





 $r_{mean}$ = 2  $2\alpha_{x}$ 

Zc(3900)/Zc(4020)

Zc(4430)

#### **Quark-exchange Model**

- At the hadron level:  $A(c\overline{d}) + B(\overline{c}u) \rightarrow C(c\overline{c}) + D(u\overline{d})$  short-range interactions
- At the quark level:



#### 2020-1-11

Molecular

Tetraquark

## **One-gluon-exchange (OGE) potential at quark level**

| Quark-exchange Model:                              | PRC 65,014903(2002) $\alpha_s(Q^2)$ Model:                                                                              | $=\frac{1}{(33-1)^{-1}}$   | $12\pi$ - $2n_f)\ln(A$                                   | $A + Q^2/B^2$                                  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|------------------------------------------------|
| $1_c$ $\overline{d}$ $\overline{c}$ $\overline{c}$ | $H_{ij} = \sum_{i < j} \frac{\lambda_i}{2} \frac{\lambda_j}{2} \left\{ \frac{\alpha_s}{r_{ij}} - \frac{3b}{4} \right\}$ | $r_{ij} - \frac{8\pi}{3m}$ | $\frac{\pi\alpha_s}{n_i m_j} \frac{\sigma^3}{\pi^{3/2}}$ | $e^{-\sigma^2 r_{ij}^2} S_i \cdot S_j \bigg\}$ |
| $\overline{c}$ $\overline{c}$ $\overline{d}$       | Parameter                                                                                                               | b                          | 0.18                                                     | GeV <sup>2</sup>                               |
| $\begin{pmatrix} 1_c \end{pmatrix}_{\mathcal{U}}$  |                                                                                                                         | $\sigma$                   | 0.897                                                    | GeV                                            |
| $C_1$                                              |                                                                                                                         | A                          | 10                                                       |                                                |
| 01                                                 |                                                                                                                         | В                          | 0.31                                                     | GeV                                            |
|                                                    | Constituent quark mas                                                                                                   | s $m_q$                    | 0.334                                                    | GeV                                            |
|                                                    |                                                                                                                         | $m_c$                      | 1.776                                                    | GeV                                            |

#### The effective potential are given as the product of the factors

$$\begin{split} h_{fi} &= I_{color} I_{spin-flavor} I_{space} \\ I_{color} &= \left\langle \omega(13)_{1_c} \omega(24)_{1_c} \left| \frac{\lambda_i \lambda_j}{4} \right| \omega(12)_{1_c} \omega(34)_{1_c} \right\rangle \text{ Molecular} \\ I_{color} &= \left\langle \omega(13)_{1_c} \omega(24)_{1_c} \left| \frac{\lambda_i \lambda_j}{4} \right| \omega(12)_{\overline{3}_c} \omega(34)_{3_c} \right\rangle \text{ Tetraquark} \\ I_{color} &= \left\langle \omega(13)_{1_c} \omega(24)_{1_c} \left| \frac{\lambda_i \lambda_j}{4} \right| \omega(12)_{\overline{3}_c} \omega(34)_{3_c} \right\rangle \text{ Tetraquark} \\ I_{spin-flavor} &= \left\langle \left[ \chi_C(13)_{S_C}^{I_C} \chi_D(24)_{S_D}^{I_D} \right]_{S'}^{I'} \left| \hat{O}_s \right| \left[ \chi_A(12)_{S_A}^{I_A} \chi_B(34)_{S_B}^{I_B} \right]_{S}^{I'} \right\rangle \\ I_{space} &= \left\langle \psi(13)\psi(24) \left| \hat{O}_r \right| \psi(12)\psi(34) \right\rangle \end{split}$$

#### The spin-flavor-color factors for the diagrams [C1,T1,T2,C2]

| Molecular:                                                      | Initial state                                            | Final state   | Coul & linear                       | Hyperfine                                                                                                |
|-----------------------------------------------------------------|----------------------------------------------------------|---------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                                 | $Dar{D}^*$                                               | $\eta_c  ho$  | $\frac{2}{9}[-1, 1, 1, -1]$         | $\frac{1}{18}[3, -1, 3, -1]$                                                                             |
|                                                                 |                                                          | $J/\psi\pi$   | $-\frac{2}{9}[-1, 1, 1, -1]$        | $\frac{1}{18}[-3, -3, 1, 1]$                                                                             |
|                                                                 | $D^*ar{D}^*$                                             | $\eta_c  ho$  | $\frac{2\sqrt{2}}{9}[-1, 1, 1, -1]$ | $-\frac{\sqrt{2}}{18}[1, 1, 1, 1]$                                                                       |
|                                                                 |                                                          | $J/\psi\pi$   | $\frac{2\sqrt{2}}{9}[-1, 1, 1, -1]$ | $-\frac{\sqrt{2}}{18}[1, 1, 1, 1]$                                                                       |
|                                                                 | $D(2S)\bar{D}^*$                                         | $\eta_c  ho$  | $\frac{2}{9}[-1, 1, 1, -1]$         | $\frac{1}{18}[3, -1, 3, -1]$                                                                             |
| Tetraquark:                                                     |                                                          | $J/\psi\pi$   | $-\frac{2}{9}[-1,1,1,-1]$           | $\frac{1}{18}[-3, -3, 1, 1]$                                                                             |
| $Z_c(3900) [[cu]_{\bar{3}_c}^{S=0}[\bar{c}\bar{u}]$             | $\begin{bmatrix} S = 1 \\ 3_c \end{bmatrix}_{1_c}^{S=1}$ | $\eta_c \rho$ | $\frac{1}{3\sqrt{3}}[-1,1,1,-1]$    | $\left[\frac{1}{4\sqrt{3}}, -\frac{1}{12\sqrt{3}}, \frac{1}{4\sqrt{3}}, -\frac{1}{12\sqrt{3}}\right]$    |
|                                                                 |                                                          | $J/\psi\pi$   | $-\frac{1}{3\sqrt{3}}[-1,1,1,-$     | 1] $\left[-\frac{1}{4\sqrt{3}}, -\frac{1}{4\sqrt{3}}, \frac{1}{12\sqrt{3}}, \frac{1}{12\sqrt{3}}\right]$ |
| $Z_c(4020) \Big[ [cu]_{\bar{3}_c}^{S=1} [\bar{c}\bar{u}] \Big]$ | $\begin{bmatrix} S = 1 \\ 3_c \end{bmatrix}_{1_c}^{S=1}$ | $\eta_c \rho$ | $\frac{2}{3\sqrt{6}}[-1,1,1,-1]$    | $\left[-\frac{1}{6\sqrt{6}}, -\frac{1}{6\sqrt{6}}, -\frac{1}{6\sqrt{6}}, -\frac{1}{6\sqrt{6}}\right]$    |
|                                                                 |                                                          | $J/\psi\pi$   | $\frac{2}{3\sqrt{6}}[-1,1,1,-1]$    | $\left[-\frac{1}{6\sqrt{6}}, -\frac{1}{6\sqrt{6}}, -\frac{1}{6\sqrt{6}}, -\frac{1}{6\sqrt{6}}\right]$    |
| $Z_c(4430) \Big[ [cu]_{\bar{3}_c}^{S=0} [\bar{c}\bar{u}]$       | $\binom{S=1}{3_c}_{1_c}^{S=1}$                           | $\eta_c \rho$ | $\frac{1}{3\sqrt{3}}[-1,1,1,-1]$    | $\left[\frac{1}{4\sqrt{3}}, -\frac{1}{12\sqrt{3}}, \frac{1}{4\sqrt{3}}, -\frac{1}{12\sqrt{3}}\right]$    |
|                                                                 |                                                          | $J/\psi\pi$   | $-\frac{1}{3\sqrt{3}}[-1,1,1,-$     | 1] $\left[-\frac{1}{4\sqrt{3}}, -\frac{1}{4\sqrt{3}}, \frac{1}{12\sqrt{3}}, \frac{1}{12\sqrt{3}}\right]$ |

### The spatial factors for the diagrams [C1,T1,T2,C2]

$$\begin{split} I_{\text{space}}^{\text{C1}} &= \int \int d\vec{q} d\vec{p}_{3} \psi_{A} (-\vec{q} - \vec{p}_{3} + \vec{p}_{c} - f_{1}\vec{k}) \psi_{B}(\vec{p}_{3} + f_{2}\vec{k}) \\ &\quad \hat{O}_{q} \psi_{C}^{*} (-\vec{p}_{3} + f_{3}\vec{p}_{c}) \psi_{D}^{*}(\vec{p}_{3} - f_{4}\vec{p}_{c} + \vec{k}), \\ I_{\text{space}}^{T1} &= \int \int d\vec{q} d\vec{p}_{3} \psi_{A} (-\vec{q} - \vec{p}_{3} + \vec{p}_{c} - f_{1}\vec{k}) \psi_{B}(\vec{p}_{3} + f_{2}\vec{k}) \\ &\quad \hat{O}_{q} \psi_{C}^{*} (-\vec{p}_{3} + f_{3}\vec{p}_{c}) \psi_{D}^{*}(\vec{q} + \vec{p}_{3} - f_{4}\vec{p}_{c} + \vec{k}), \\ I_{\text{space}}^{T2} &= \int \int d\vec{q} d\vec{p}_{3} \psi_{A} (-\vec{p}_{3} + \vec{p}_{c} - f_{1}\vec{k}) \psi_{B}(\vec{p}_{3} + f_{2}\vec{k}) \\ &\quad \hat{O}_{q} \psi_{C}^{*}(\vec{q} - \vec{p}_{3} + f_{3}\vec{p}_{c}) \psi_{D}^{*}(\vec{p}_{3} - f_{4}\vec{p}_{c} + \vec{k}), \\ I_{\text{space}}^{C2} &= \int \int d\vec{q} d\vec{p}_{3} \psi_{A} (-\vec{q} - \vec{p}_{3} + \vec{p}_{c} - f_{1}\vec{k}) \psi_{B}(\vec{p}_{3} + f_{2}\vec{k}) \\ &\quad \hat{O}_{q} \psi_{C}^{*} (-\vec{q} - \vec{p}_{3} + f_{3}\vec{p}_{c}) \psi_{D}^{*}(\vec{q} + \vec{p}_{3} - f_{4}\vec{p}_{c} + \vec{k}). \end{split}$$

2020-1-11

#### **Ratios within the molecular scenario**



R<sub>Zc(3900)</sub>~1.3 R<sub>Zc(4020)</sub>~(2.7-2.3) I <sub>Zc(4020)</sub>=13±5 MeV R<sub>Zc(4430)</sub>~(1.4-1.3)  $D * \overline{D} *$ I(J<sup>PC</sup>)=1(?<sup>?-</sup>) 1<sup>+-</sup>?

$$M_{Zc(3900)}=3886.6\pm2.4 \text{ MeV}$$

$$\Gamma_{Zc(3900)}=28.2\pm2.6 \text{ MeV}$$

$$\boxed{D\overline{D}*} \qquad I(J^{PC})=1(1^{+-})$$

$$\frac{\eta_c \rho^{\pm}}{J/\psi \pi^{\pm}}=2.2\pm0.9$$

$$M_{Zc(4020)}=4024.1\pm1.9 \text{ MeV}$$

 $M_{Zc(4430)}$ =4478<sup>+15</sup>-18 MeV Γ<sub>Zc(4430)</sub>=181±31 MeV  $D(2S)\overline{D}*$  $I(J^{PC})=1(1^{+-})$ 

#### Ratios are similar within the molecular and tetraquark scenarios



#### Ratios between Zc(3900) and Zc(4020) are greatly different in two scenarios:

Т

◆ The ratios are similar in two physical scenarios :



|                                                  | 观测道                                              | Molecular | Tetraquark |
|--------------------------------------------------|--------------------------------------------------|-----------|------------|
| <b>Ζc(3900)</b><br>Γ <sub>Tot</sub> =28.2±2.6MeV | η <sub>c</sub> ρ、 <b>J</b> /Ψπ                   | R~1.3     | R~1.6      |
| Zc(4020)<br>Γ <sub>Tot</sub> =13±5MeV            | <b>η</b> <sub>c</sub> ρ、 <b>h</b> <sub>c</sub> π | R~2.7-2.3 | R~1.6      |
| <b>Ζc(4430)</b><br>Γ <sub>Tot</sub> =181±31MeV   | ψ(2S)π <b>、J/Ψπ</b>                              | R~1.4-1.3 | R~1.7-1.4  |

**Summary** 

◆ The ratios between Zc(3900) and Zc(4020) are greatly different,

Molecular:  

$$\frac{\Gamma[Z_c(3900) \rightarrow \eta_c \rho]}{\Gamma[Z_c(4020) \rightarrow \eta_c \rho]} = 12.5,$$

$$\frac{\Gamma[Z_c(3900) \rightarrow J/\psi\pi]}{\Gamma[Z_c(4020) \rightarrow J/\psi\pi]} = 24.2.$$

Tetraquark:  

$$\frac{\Gamma[Z_c(3900) \rightarrow \eta_c \rho]}{\Gamma[Z_c(4020) \rightarrow \eta_c \rho]} = 1.2,$$

$$\frac{\Gamma[Z_c(3900) \rightarrow J/\psi\pi]}{\Gamma[Z_c(4020) \rightarrow J/\psi\pi]} = 1.2.$$

and strongly indicates that Zc(3900) and Zc(4020) are molecular-like signals which arise from the  $D^{(*)}\overline{D}^{(*)}$  hadronic interactions.

# Thanks



FIG. 4: The partial widths of the  $\eta_c \rho$  and  $J/\psi \pi$  decay modes for  $Z_c(3900)$ ,  $Z_c(4020)$  and  $Z_c(4430)$  as the  $D\bar{D}^*$ ,  $D^*\bar{D}^*$  and  $D(2S)\bar{D}^*$  molecular states, respectively. Their masses are fixed respectively on the physical masses, namely 3886.6 MeV, 4024.1 MeV and 4478 MeV.

