WCDA二号水池20吋PMT和 时间刻度系统

高博

gaobo@ihep.ac.cn

Outline

- The MCP-PMT work
 - MCP-PMT work @ Nanjing
 - Transportation
 - Retest @ Daocheng
 - Installation @ Haizishan
 - The "Dry-running"

- The calibration work
 - System updates from pool1
 - Installation & check
 - Calibration work flow

MCP-PMT work

MCP-PMT work @ Nanjing

WCDA requirements

- 2270 water-proofed PMTs required, ≥ 240 PMTs / month
- 900 for 2019, 1370 for 2020

Changes

• the high-vlotage divider circuit design changed, single cable is changed to double cables

Other work

- PMT test with FEEs should be passed
- the quality check (PMT / HV circuit / potting)
- packaging & transportation

Man power

 one and a half men (You Xiaohao, Gao Bo) from IHEP, with 4 native employees

Difficulties

all work must be done in less than 40 m² space

The potting work

Shirnking tube Pressure test

(sampling test)

10/25/2019

Ready for retest @ NNVT

LHAASO_group_meeting, Zhuhai

6

Transportation

- Day from 2019/05/26 to 2019/10/20, 1203 PMTs have been sent to Haizishan, Daocheng.
- **1930** PMTs will be accomplished by the end of 2019.

Retest @ Daocheng

- The storage (500 PMTs in the hall)
- Freezing test (sampling @ -5)
- Water pressure test (all)
- Parameters test with HV

Test flow

- HV value @ Gain = 5×10⁶
- Q-T curve

10/25/2019

LHAASO_group_meeting, Zhuhai

Some results

HV differences

Installation @ Haizishan

- Test speed @ Daocheng is 30 PMTs/day, 30 PMTs send to Haizishan for installation everyday;
- 2 PMTs share 1 HV channel, the difference is controlled within 5V, all PMTs paired work is done in pool2.

PMTID	CableID	HV1	Hv2	testch	ClusterID	Cell id
pc19045187	290	1811	1814	7		6
pc19045009	0552	1748	1750	6		8
pc19012525	0101	1723	1750	8		7
pc19045032	0531	1724	1764	2		5
pc19041031	555	1755	1767	11	C24G1	4
pc19045120	634	1750	1770	8		2
pc19033026	611	1757	1770	15		1
pc19041034	669	1746	1775	1		0
pc19045037	633	1775	1775	9		3
pc19033052	390	1751	1775	12	C24G2	6
pc19045023	609	1763	1776	6		7
pc19012539	0348	1756	1780	3		5
pc19045049	686	1762	1782	4		8
pc19041033	479	1723	1793	2		3
pc19045028	621	1781	1795	7		4
pc19045179	333	1862	1870	5		1
pc19041021	0675	1859	1870	4		0
pc18103023c	13	1788	1815	10		2
10012020		1045		0		-

The "Dry-running"

Single counting rate

Shower event without water

A shower event detected by pool1 & pool2

Calibration work

System layout

• Updates

- Cable
 - Use multi-wired cable, include electric power / 485 signal / trigger signal, from mother board to slave, easy to do installation & maintenance
- LED driver
 - LED driven voltage can be adjusted in 0.1V resolution
- Slave board
 - Sealed in an ABS waterproof box, independent of FEE box

ref-trig

Installation & fiber check

- 2 fibers (in/cr) are installed on 1 PMT, 1800 fibers in total;
- After all fibers installed as "infiber" mode, than cross fibers between neighbour clusters;
- Check fiber work status & fiber installation;
- Pull up the slave board & LED tube with FEE box.

in-fiber check

cr-fiber check

Time calibration work flow

Data analysis

- data selection
 - select LED data
 - get Q/T value
 - get rid of the fiber time offsets on each PMT
- Q-T correction
 - should for every PMT
 - to normallize to a selected PMT charge
- cross algorithm
 - with 8 cross fibers' data between neighbour clusters
 - different path

Conclusion

- MCP-PMT work
 - The gain uniformity needs to adjusted, after that the detail work of time caibration will carried out ;
 - The water level now is 120 cm, the PMT work status, single rate & shower event will be monitored during water injection.
- Calibration work
 - pool2 tcal system has updates from tcal system in pool1, will give more detail calibration result;
 - the "Q-T" curve for each PMT will be used in pool1 & pool2, try to understand time calibration difference under different light intensity and between Pshower & γ-shower.

Thank you !

- cross calibration
 - 2 fibers on 1 PMT
 - 8 fibers between clusters (4 pairs)
 - caculation : A-C = (A-B)+(B-C) (B as jumper)
- neighbour cluster ci/c0, c0 as reference cluster
- CELL ci_chi TO c0_ch0, there are 8 time offsets value
- use cross fiber ci_chx,得到

•
$$T_{ci_chi} - T_{c0_ch0}$$

= $(TIN_{ci_chi} - TIN_{ci_chx}) - (TCR_{ci_chx} - TCR_{c0_ch0})$

- the data
 - LED signal selection
 - LED triggered seperatly
 - event mode (nhit > 900)
 - LED charge & time
 - Q-T recorrection
 - T(q) = 20.*pow(q,-1.2)+10.*pow(q,-0.8)
 - normalized to 30 PE

