EPC

Cheng-Wei Shih¹

Supervisor : Chia-Ming Kuo¹, Suen Hou², Cheng-Dong Fu³

¹National Central University, Taiwan ²Academia Sinica, Taiwan ³Institute of High Energy Physics, China

- Case 1 LumiCal : angular resolution LumiCal position change comparison material test
- Case 2 LumiCal : angular resolution

Case – 1 LumiCal

Geometry – hollow circle shape detector

Cheng Wei, Shih (NCU HEP, Taiwan)

Geometry – hollow circle shape detector

Energy cut method : if the cell energy deposit < energy cut, eliminate this cell

Geometry : fine the sector width

LumiCal position : 970

Angular resolution as a function of sector width

LumiCal position : 970

Cheng Wei, Shih (NCU HEP, Taiwan)

Preliminary events count test


```
\frac{\Delta N}{N_{true}}: - 10<sup>-3</sup>, reached (higgs)

\Delta N : N_{reco} - N_{true}
Exclude edges (poor reconstruct region)

Sector width : 1.4 mm

Acceptable \theta : 2.0<sup>0</sup> to 5.5<sup>0</sup>
```


LumiCal change position comparison

Sector width : 0.3 mm, energy cut : 0.007 GeV, difference : $\theta_{reco} - \theta_{true}$ 500 mm with 4.17% worse

Position : 500 mm

LumiCal position : 500

Cheng Wei, Shih (NCU HEP, Taiwan)

LumiCal position : 500, Beam pipe code in macro file : /Mokka/init/EditGeometry/addSubDetector tube_cepc_v4

(pipe, 0.3 mm) θ angular difference test, energy cut : 0.007000 GeV

6

4

2

LumiCal position : 500

Flange with / without beam-pipe

With beam-pipe : 3% worse -> multiple scattering effect dominated : flange

Cheng Wei, Shih (NCU HEP, Taiwan)

Case – 2 LumiCal

Geometry : 3 layers tracker + sampling calorimeter

LumiCal position : 500 Sector ϕ rotate : 3.75⁰

PHENIX detector : FVTX FVTX detail

LumiCal position : 500

IP 0 0 0, direction θ : 6.93⁰ (fix angle)

New angle reconstruction method (the one with smallest χ^2 /NDF is used)

Preliminary events count test (only tracker)

LumiCal position : 500

 $\frac{\Delta N}{N_{true}} : 7.3^* 10^{-4} , \text{ requirement} : 10^{-3}$ Reweight function : $\frac{1}{2(\frac{\chi}{180}*\pi)^2}$, x : degree

IP 0 0 0, Random ϕ angle : 360 degree. Used range : 3.5 to 10.5 degree.

New angle reconstruction method (the one with smallest χ^2 /NDF is used)

Electron, 120 GeV, One side, doesn't consider FSR photon

- In case-1, energy cut method works well to reconstruct angle.
- LumiCal position (from 970 to 500) doesn't effect resolution a lot.
- Flange dominate multiple scattering effect.
- Case 2 detector may be more realistic, the angle reconstruction method need to be optimized.

100 radius (mm) -0.01(qualified cell Sector width : 0.3 mm truth direction 90 number of qualified points:: 3470 0.014 -0.012 80 0.01 70 300.0 Truth direction 60 0.00 50 0.004 40 0.002 30 0 980 1020 1080 1000 1040 1060 Z axis (mm)

LumiCal position : 970

event display, energy cut : 0 GeV, radius : 0.3 mm, event : 2

21

LumiCal position : 970

Angular difference as a function of random θ angle

LumiCal position : 970

Energy cut : 0.0075 GeV for each sector cell (the best) Sector width : 1.4mm

Acceptable θ : 1.77⁰ to 5.88⁰

Energy cut method can work

 θ angular difference test, energy cut : 0.007500 GeV

Identification of LumiCal position

Change position performance test

*Red mark : better one	4 ⁰ region	970 mm	500 mm	500 mm case-2
Performance check	Truth angle (degree)	3.99968	4.00072	3.99962
	RECO angle (degree)	3.99966	4.00247	3.99781
	difference	-2.072*10 ⁻⁵	0.001745	-0.00181
IP : 0 0 0, LumiCal position : 500, 970	4.5 ⁰ region	970 mm	500 mm	500 mm case-2
IP : 0 0 0, LumiCal position : 500, 970 Only calorimeter	4.5 ⁰ region Truth angle (degree)	970 mm 4.50011	500 mm 4.49905	500 mm case-2 4.49995
IP : 0 0 0, LumiCal position : 500, 970 Only calorimeter Sector width : 0.3 mm	4.5° regionTruth angle (degree)RECO angle (degree)	970 mm 4.50011 4.50231	500 mm 4.49905 4.50193	500 mm case-2 4.49995 4.49611

5 ⁰ region	970 mm	500 mm	500 mm case-2
Truth angle (degree)	5.00009	4.99982	4.99987
RECO angle (degree)	5.00172	5.00469	4.99937
difference	0.00163	0.00487	-0.000506

Conclusion : consider case -1, LumiCal position at 970 mm has more chance to reconstruct better

Cheng Wei, Shih (NCU HEP, Taiwan)

 $1\chi_0$ Tungsten

Flange

LumiCal position : 500

200 mm

Sector width : 0.3 mm

LumiCal

eam pipe

500 mm

(pipe + flange, 0.3 mm) angular difference test, energy cut : 0.007000 GeV

Material test : LumiCal + pipe + flange

26

event display, energy cut : 0.0125 GeV, radius : 0.8 mm, event : 55

Still thinking other good method....

Event display with energy cut : 0.011 GeV, sector width : 3 mm

Cheng Wei, Shih (NCU HEP, Taiwan)

sphenix intt

Kai-Yu Cheng, Cheng-Wei Shih, Chia-Ming Kuo(NCU) Rui Xiao (PURDUE) Takahito Todoroki, Itaru Nakagawa (RBRC) Donald Pinelli, Rachid Nouicer (BNL)

