

DEPFET Pixel Detector for Belle II

Hua Ye (DESY)

(hua.ye@desy.de)

2019.09, IHEP, Beijing

CP Violation and CKM Matrix

The strength of the coupling of quarks via the charged weak current is described by the Cabibbo-Kobayashi-Maskawa (CKM) Matrix.

Its unitarity constraints define the CKM Unitarity Triangles.

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Time dependent CP violation measurements in B_d decays allow us to measure the angles ϕ_1 and ϕ_2 .

Time Dependent CP Violation Measurements

 \sim Tree-dominated b \rightarrow ccs, golden mode B⁰ \rightarrow J/ ψ Ks, theoretically and experimentally precise. \diamond Gluonic-penguin-dominated b \rightarrow qqs, e.g. B⁰ $\rightarrow \phi K_s$, $\eta' K_s$, particularly sensitive to new physics. \sim Statistical error is still dominated in the measurements of angles of the unitarity triangle. DESY.

Time Dependent CP Violation Measurements

♦ Gluonic-penguin-dominated b→qq̄s, e.g. $B^0 \rightarrow \phi K_s$, $\eta' K_s$, particularly sensitive to new physics. \sim Statistical error is still dominated in the measurements of angles of the unitarity triangle. DESY.

Belle II Experiment

Flavour Physics @Belle II

Precise measurements of CKM matrix elements and their phases.

Are there new sources of CP violation in the quark sector?

time-dependent CP violation in penguin transitions b->qqs quarks, such as B->φK⁰ and B->η'K⁰

Multiple Higgs bosons?

Search charged Higgs in flavour transitions to τ leptons, including B-> τv and B->D^(*) τv .

Flavour-changing neutral currents beyond the SM?

forward-backward asymmetries of b->s I+I-

Lepton flavour violation (LFV)

Non-Flavour Physics @Belle II

States not predicted by the conventional hadron interpretation.

Dark sector

SuperKEKB

Design peaking luminosity is 8 x 10³⁵ cm⁻²s⁻¹

beam current **x2** beam-beam param. **x1**
$$= \frac{\gamma_{\pm}}{2er_{e}}(1+a)\frac{R_{L}}{R_{\xi}}\left(\underbrace{\frac{I_{\pm}\xi_{y\pm}}{\beta_{y\pm}^{*}}}_{\beta_{y\pm}^{*}}\right)$$

vertical beta function x20

Nano-Beam scheme:

Squeeze vertical beta function at the IP (β_y^*) and minimize longitudinal size of overlap region.

overlap region (≠ bunch length)

Strong focusing of beams down to vertical size of ~ 50nm requires low emittance beams, very sophisticated final focus quadrupoles (QCS) and a large crossing angle.

The ultra-high luminosity also increases the background level and trigger rate.

e -

Quantum entangled neutral *B* meson pair production

anti B

Y(4s)

 π

 $\mathsf{B}_{\mathsf{phys}}^{J\!/\psi}$

 Δz

 K^+

 K_s^0

 π^{-}

SuperKEKB

Design peaking luminosity is 8 x 10³⁵ cm⁻²s⁻¹

reduced boost

B_{tag}

 \mathbf{P}^{1}

Belle II Detector

Highlights of Detector Upgrade

- Smaller beam pipe radius allows to place the innermost PXD layer closer to the Interaction point (r = 1.4 cm)
 - significantly improved vertex resolution
- VXD comprises the PXD of the ultra-low mass DEPFET pixels and larger SVD.
- PID: TOP and ARICH
 - better K/ π separation covering the whole momentum range
 - fake rate reduced by factor 2-5
- ECL and KLM consolidation
 - improvements in ECL and KLM to compensate for larger background
- Improved hermeticity
 - geometry and reduced boost
- Improved trigger and DAQ
 - 30 kHz L1 rate
 - 10 kHz HLT output rate (300 kB/evt)

Belle II Vertex Detector

Pixel Detector (PXD)

- 2 layers of 40 DEPFET modules @r=14/22 mm
- 250 x 768 pixels per module
- Pixel size: 50 x 55-85 μm²
- Occupancy: 0.4 hits/µm²/s (3% max)
- Integration time: 20 µs (rolling shutter)
- Thickness: 75 μ m, 0.21% X₀ per layer

Silicon Vertex Detector(SVD)

- 4 layers of 172 double-sided silicon strip detectors (DSSDs) @r=3.8/8.0/11.5/14cm;
- 768 strips in p-side, 768(512)strips in n-side.
- Slant shapes in FWD region for the material budget reduction.
- material budget: 0.7% X₀ per layer

2 layers of DEPFET pixel detector (PXD)

Depleted P-channel Field-Effect Transistor (DEPFET)

5

17.00

DEPFET Pixels

DEPFET provides radiation detection, fast charge collection and internal amplification.

Each pixel is a p-channel FET on top of fully depleted silicon bulk

- Fast charge collection (~ns)
- Charges collected in the "internal gate"
- Readout of modulated drain current
 - ➡ internal amplification

$$g_q = \frac{\partial I}{\partial q} \approx 500 \, \frac{pA}{e^-}$$

- High Signal to Noise Ratio (SNR)
- Periodical clearing of "internal gate" required to reset the pixel

Module Production

Highly granulated pixel detector with ultra-low mass (down to 50µm)

Key Process Modules: Wafer bonding and thinning of the top layer Sensor fabrication on SOI Etching of the handle wafer

PXD Module Concept

Pixel size: varies in z direction, 50 x 55-85 μm²

- optimized to have the best resolution in forward direction around 45° incident angle
- ✤ 250 x 768 pixels per module
- By thinning the active sensor thickness can be reduced to as little as 50 µm.
- For optimal position resolution (COG) 75µm
 were chosen for PXD
- ✤ 3 Metal layers for circuitry
 - ጳ 2AI + 1Cu
- Mechanically self-supporting device

ASICs

- ✤ 3 types of ASICs are bump-bonded to the module
 - Switcher: controls the gate and clear lines of the matrix.
 - DCD: consists of 256 current mode pipeline 8-bit ADCs digitalize the inputs for drain lines.
 - DHP: digital processor chips, 0-* suppression & triggered readout; able to transmit 1.6 Gbit/s of data over a 15 m cable to the backend.

Switcher

DHP

Readout Mode

- Rolling shutter mode
 - Read signals row-by-row
 - 4 rows in parallel
 - Read-Clear cycle in ~100ns
 - Full integration time is 20µs (twice the revolution time of SuperKEKB)
 - Only 'activated' rows consume power
 - Low sensor power consumption
- Max. Acceptable average occupancy <3%, otherwise,
 - 🔹 data loss,
 - degrade tracking performance.

Module Testing

Characterization:

- High-speed links scan
 - Find the optimal parameters for stable data transfer
- Delay scan
 - Communication between ASICs.
- Offset calibration
- ADC curve scan
- Source scan

*

- ✤ To achieve homogeneous response in matrix

Pedestals

Principle of the offset compression

DHP

Module Performance

- Soft components (<10keV) on calibrated cluster energy spectra.
 - hint for synchrotron radiation

SNR ≥ 50 has been achieved

from PXD Phase3 module

Irradiation test with full PXD module

Defects of SiO₂ cause shift of threshold voltage.

- Consistent results from dedicated irradiation campaign with earlier lab measurements and phase 2 experience
- Module still functional after > 25 Mrad (corresponding to 250mrad/s for 10 smy)

Gated Mode Operation

- At design luminosity we have to inject at 2x25Hz (=> 20ms)
- Continuous / trickle beam injection causes noisy bunches.
- Sensor can be periodically blinded with Gated Mode (GM)
 - Newly created charges are not collected
 - Charges in internal gate are preserved

DEPFET based PXE

PXD Layout

Ladder formed from 2 sensors

- □ self supporting
- □ 4 type of different sensors
- butt-face joint glueing, ceramic mini-rods embedded in the rim.

One common support for both layers

- 4 combined support and cooling blocks (SCBs)
- connected by silver coated carbon tubes for air cooling and grounding

SCB, manufactured with 3D printing, with enclosed CO_2 and open N2 channels integrated.

Ladder Gluing

1. Preparations for Gluing Step

2. Glue automatically dispensed on sensor front edge

3. Modules placed on movable stages

Ladder Gluing

1. Preparations for Gluing Step

2. Glue automatically dis on sensor front edge

on movable stages

Due to relatively high failure rate in gluing, de-scoped PXD installed in 2018.

Full PXD installation is scheduled in 2021.

Ladder Mounting

• Mounting Sequence

Half-Shell Mounting

PXD System

Detector, service and readout

PXD System

Detector, service and readout

Global DAQ

DESY.

System) Architecture

Slow Control

GUI: CS-studio

2-Phase CO₂ Cooling

Belle II VXD Cooling Pipe Line System

Belle II VXD Cooling Pipe Line System

VXD Thermal Mock-up @ DESY

Study the thermal / mechanical properties of VXD as well as the integration procedures. Verify the performance of the 2-phase CO_2 cooling system.

- The temperature on sensors and ASICs need to be well controlled for S/N improvement.
- A cooling capacity of 2-3kW in the dense VXD volume is required.
- \diamond The 2-phase CO₂ cooling is an efficient concept for low-mass detector.
- An optimal CO₂ temperature region of -20 to -30°C has been established.

Temperature along PXD Ladder

- The power consumption of full PXD is 420W,
 - 360W are contributed from DCD/DHP, which are located in the end of stave.
 - ➡ Active 2 phase CO2 cooling is required there.
 - Little power derived from matrix (0.5W per module) and Switchers (1W per module)
 - \rightarrow Forced N₂ cooling is sufficient in the sensitive area.

Possible vibration in PXD ladder 10⁻¹ Ę sensor, N₂ 30L/min sensor, N 20L/min sensor, N 9L/min

Temperature along PXD ladder

PXD Performance: Efficiency

• Projection on the ϕ_0 -tan(λ) plane.

- ∧ = π/2 θ, : angle between a track and the plane ⊥ to the beam.
- Gaps between fwd & bwd modules and between half shells
- Few modules not yet at optimal working point

PXD Performance: Efficiency

- Projection on the ϕ_0 -tan(λ) plane.
- $\lambda = \pi/2 \theta$, : angle between a track and the plane \perp to the beam.
- Gaps between fwd & bwd modules and between half shells

Transverse Impact Parameter (*d*₀**) Resolution**

After correcting for the beam spot position, the φ-dependent σ(d₀) depends on the intrinsic VXD resolution and transverse size of the luminous region:

$$\sigma_{d_0} = \sqrt{\sigma_i^2 + (\sigma_x \sin \phi_0)^2 + (\sigma_y \cos \phi_0)^2}$$

♦ In early phase 3, $\sigma_x = 14.8 \mu m$ and $\sigma_y = 1.5 \mu m$

The intrinsic resolution is estimated by

$$\Delta d_{0} \equiv d_{0}(t_{-}) + d_{0}(t_{+}),$$

from 2-track (t₋ and t₊) events, which are produced back-to-back.

Good agreement observed between data and MC expectation

Summary

- The DEPFET concept combines the detection together with the in-pixel amplification by integration, on each pixel, of a FET into a fully depleted silicon bulk.
- The first real beam experience with a completely new detector type (DEPFET) and half of the full scale has been achieved.
 - Challenging operating conditions close to the IP at a very ambitious machine like SuperKEKB
- Good PXD performance is demonstrated in the 2019 spring runs.
 - Well controlled thermal performance
 - Efficiency -> further module optimisation possible
 - Impact parameter resolution very close to MC expectation