

Electroweak Precision Measurement at Hadron Colliders

Siqi Yang University of Iowa University of Science and Technology of China

2019. Sept. 12th

Hadron Colliders

D0 experiments at Fermilab Tevatron

• proton-antiproton collider, 1.96 TeV

ATLAS experiments at LHC

• proton-proton collider, 13 TeV

Electroweak precision measurement and global fitting

Basic idea

- Observation on fundamental paramaters
 - α , G μ , M $_Z$, M $_W$, sin² θ_W , M $_H$, M $_{top}$
- Input to the global fitting
- Starting from 1960s

Key parameters

- M_W and $sin^2\theta_W$ are the most important parameters since LEP/SLC
- LEP/SLC: "for the first time the experimental precision is sufficient to probe the predictions at loop level"
- M_W and sin²θ_W : ~6% and 4% shift due to loop effects on their experimental observations
- Currently the parameters with worst precision

Pre-Top-Higgs Era

Aiming for top quark and Higgs boson

- Top quark and Higgs boson, missing freedoms
- Major task: predicting M_{top} and M_H under standard model assumptions
- Before their discoveries: M_{top} prediction within 50 GeV, M_H within 30 GeV

Weak mixing angle @ Mz

Asymmetry at Z pole

- Forward-Backward Asymmetry (A_{FB})
- A function of invariant mass

cosθ>0, forward cosθ<0, backward

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = A_{FB} (\sin^2 \theta_{\text{eff}}^f)$$

Measurement from LEP/SLC (1)

Electron Positron Collider LEP and SLC

- LEP: Spatial asymmetry AFB, SLC: Polarization asymmetry
- Final state: ee, mumu, tautau, qqbar (including light quark and heavy quark)

Dominant uncertainties -///// v,Z/W)^^^^^ γ,Z/W ~~~~~ γ,Z/W **Statistical uncertainty** • **Loop correction**: н Contribution from loops 3.7% -Not being systematically studied Z/W 1AN Z/W Z/W **before LEP** Z/W e

Measurement from LEP/SLC (2)

Results (by 2006, from 1980s)

- Most precise ones: $\Delta \sin^2 \theta_W$ (LEP) = 0.00029, $\Delta \sin^2 \theta_W$ (SLD) = 0.00026
- Statistical dominated
- Completely two loops + leading 3 loops: $\Delta sin^2 \theta_W$ (loop) = 0.00005

Post-Top-Higgs Era

Aiming for SM global test, and new physics

- All freedoms have been experimentally fixed, allow for SM global test
- Predictions for potential beyond standard model new physics
- Measurement dominated by hadron colliders

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\alpha(1 + \Delta r)}{G_F M_Z^2}} \right)$$
$$\sin^2 \theta_{\text{eff}}^f = \left(1 - \frac{M_W^2}{M_Z^2} \right) (1 + \Delta \kappa_f)$$

New challenges at hadron colliders

- Precision need to be at O(0.01%)
- New uncertainty souces (systematics, PDF, nPQCD)
- Separate measurements for different fermions (final states)

Measurements at Hadron Colliders

Measurement at hadron colliders

Dominant uncertainties and related topics

by 2011	$\Delta sin^2 \theta_{eff,lept}$	comments
EW loops	0.00005	Achieved by LEP age
Statistics	>0.00030 (Tevatron) <0.00010 (LHC future)	Will be reduced
PDF	0.00048	New
Initial State Radiation	>0.00010 (LHC)	New
Systmetics	0.00030	New

PDFs in the weak mixing angle measurement

Tevatron

- Assume q from proton, qbar from antiproton
- ~5% opposite direction (sea quarks)
- PDF describes valence/sea quark fraction

LHC

- Assume q = Z boost direction (valence quark E > sea quark E)
- Large possibility opposite directions (dilution)
- PDF describes valence/sea quark energy spectrum

More significant PDF uncertainty at LHC

PDF and related measurements (1)

W asymmetry

- W asymmetry at Tevatron: u/d quark energy spectrum
- W asymmetry at LHC: u/d quark fraction
- Large cross section and statistics

$$A(y_W) = \frac{\frac{d\sigma_{W^+}}{dy_W} - \frac{d\sigma_{W^-}}{dy_W}}{\frac{d\sigma_{W^+}}{dy_W} + \frac{d\sigma_{W^-}}{dy_W}}$$

 u/\overline{u}

 \overline{d}/d

 W_R^{\pm}

PDF and related measurements (2)

Other measurements which could contribute

• Z rapidity, Z pT, AFB @ high mass and low mass

Initial state radiation and QCD

Significant at LHC

- Significantly affects boson pT
- QCD resummation: low transverse momentum of Z (Z pT), non-perturbative QCD
- Rely on the Z pT and W pT measurement

Z pT distribution at LHC pp collision. Majority of the events have low Z pT (<20 GeV)

Initial state radiation and QCD

Z pT spectrum with QCD scale changes

Compared to nominal Z pT, changing scales gives unreasonable large shifts. It means a better experimental constraint is needed.

Overall planning for EW measurement

A collection of physics topics

- Drell-Yan and AFB@Z pole: weak mixing angle
- W asymmetry, Z rapidity, AFB@high mass/low mass : PDF
- W pT, Z pT: QCD resummation
- PDF/QCD/Weak mixing angle extraction

However

- Difficult, long time schedule, less paper publication
- physics, experimental techique, theory
- Systematic control

Systematics: lepton performance (1)

Above topics limited by lepton performance

- lepton energy/momentum: AFB, weak mixing angle, Z pT, W pT
- direction/selection efficiency: W asymmetry, Z rapidity

by 2011	relative uncertainty	needed precision
electron energy	0.1% - 1%	0.01%
muon momentum	>1%	0.01%
efficiency	1% ~ 10%	<1%

lepton performance limits the related W/Z measurements

Systematics: lepton performance (2)

Hadron collider and e+e- collider

- e+e- colliders:
 - mass (c.m.s. energy) determined from beam
 - efficiency almost 100%
- hadron colliders:
 - mass reconstructed from final state particles
 - efficiency ~50%, depends on particle directions
- Especially forward regions!

Measurement at hadron colliders

Dominant uncertainties and related topics

by 2012	$\Delta sin^2 \theta_{eff,lept}$	Comment
EW loops	0.00005	Achieved by LEP age
Statistics	>0.00030 (Tevatron) <0.00010 (LHC future)	Will be reduced
PDF	0.00048	Tevatron+LHC W asymmetry, Z rapidity
Initial state radiation	>0.00010 (LHC)	Tevaron+LHC Z pT, W pT
Systemics	0.00030	Key Point

Systematic at hadron colliders

Traditional method

- based on detector simulation and hardware calibration
 - material, electronics ...
- systematic controlled to 0.1% 1%

Difficulties

• aiming for 0.01%, effects which are not simulable become significant

	Detector response	Problem
electron energy	pileup noise, calo- algorithm, energy loss	dependence with energy, direction, luminosity
muon momentum	magnetic, misalignment, photon radiation, multiple interaction	dependence with pT, direction, charge

How to control systematics

Parameterization

• Factorize all potential effects into parameters, e.g.:

$$E_{\rm obs} = b + k \times E_{\rm truth} + \gamma \times E_{\rm truth}^2 + \cdots$$

- Use physics constraints to determine their values
- Precision determined by how many parameters considered
- difficulties: number of parameters limited by the only physics constraint we have: M_Z

Lepton calibrations

More physics constraints

- At hadron colliders, Z boson boost varies from initial quark energy difference
- Final state leptons are dominated by the Z boost rather than Z decay
- Difference Z boost provide difference lepton kinematics

$$E_{\rm obs} = b + k \times E_{\rm truth} + \gamma \times E_{\rm truth}^2 + \cdots$$

Calibration on particles

- **Improvement both on D0 and ATLAS performance**
- 2018: accepted as standard calibration procedure (electron energy calibration + efficiency corrections) by ATLAS collaboration

	relative uncertainty before my calibration	improvement
electron energy	0.1% - 1%	0.01%
muon momentum	>1%	0.01% - 0.1%
efficiency	1% ~ 10%	~1%

Calibration on physics

AFB vs mass in D0 muon channel before/after calibration

AFB vs mass in ATLAS muon channel before/after calibration

D0 electron final state measurement

A collection of records

Phys. Rev. Lett. 115, 041801 (2015)

- The first time that
 - weak mixing angle measurement at hadron collider has a precision close to the best LEP/SLD
- The most precise measurement of:
 - electron-final state determination @ hadron colliders
 - light quark involved determination (including LEP/SLD)
 - single channel determination @ hadron colliders

$$\sin^2 \theta_{\rm eff}^{ee} = 0.23137 \pm 0.00047$$

The original expected unc. is >0.00085!

D0 muon final state measurement

A collection of records

Phys. Rev. Lett. 120, 241802 (2018)

- The first time that
 - muon final state used at D0 in precision measurement
- One of the most precise measurements of:
 - muon final state determination (including LEP/SLD)
- Combined with D0 electron:
 - the most precise single experimental determination

$$\sin^2 \theta_{\rm eff}^{\mu\mu} = 0.23016 \pm 0.00064$$

Muon channel was not planned in D0 precision measurement !

Tevatron combination

Phys. Rev. D 97, 112007 (2018)

 $\sin^2 \theta_{\rm eff}^{\rm lept} = 0.23148 \pm 0.00033$

Academic Influences

Invited talks at international conferences

- 14 talks at top conferences
- 2014 Moriond, 2014 ICHEP
- 2015 LHCP
- 2016 Blois, 2016 ICHEP
- 2017 Mriond, 2017 MITP, 2017 EPS (2 talks), 2017 PANIC
- 2018 ICHEP (2 talks)
- 2019 Moriond, 2019 EPS

On going work

Coming soon ...

Next few years

- Weak mixing angle determination using ATLAS 2015+2016 data, $\Delta sin^2 \theta_W \sim 0.00045$
 - followed by measurement using full Run 2 data, $\Delta sin^2 \theta_W < 0.00025$
- W pT measurement using D0 data
- Z rapidity measurement using D0 data
- W asymmetry measurement using ATLAS Run 2 data (ongoing)
- PDF study in CT18 vs precision EW measurement
- QCD resummation vs precision EW measurement at LHC

Thanks

Backup

electron calibration

Backup 1

Muon calibration @ ATLAS

Red: before calibration Green: calibrate using traditional method **Blue: calibrate using new method**

Backup 2

Systematics: lepton performance (3)

Lepton calibration

- Limited precision using hardware-level corrections and simulation
- Physics calibration: M_Z

ATLAS performance

