

Recent highlights from the LHCb experiment

钱文斌 (Wenin Qian) 中国科学院大学 (University of Chinese Academy of Sciences) 2019/12/06

中国科学院粒子物理前沿卓越创新中心第七次全体会议

Outline

Recent highlights on spectroscopy studies

• Recent highlights on CPV measurements

• Conclusion

Disclaimer: results of QGP, rare decays, charm CPV etc. from LHCb China group not covered here

Spectroscopy studies by LHCb-China group

- Charmonium production studies
- Charmed and charmonium production at cold nuclear
- Doubly charmed baryons and their extensions
- Properties of charmed baryons
- B_c physics
- Exotic-state searches and property study

2019/12/06

越中心 領

Reminder: Discovery of Ξ_{cc}^{++}

PRL 119 (2017) 112001 PRL 121 (2018) 052002

- Observed in the decay $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ with 1.7 fb^{-1} data at 13 TeV
- Signal yields: 313 ± 33 , $>12\sigma$
- Candidates per Mass measured to be: 3621.40 ± 0.72 (stat.) ± 0.27 (sys.) ± 0.14 (Λ_c^+) MeV
- Lifetime measured to be: $0.256^{+0.024}_{-0.022}$ (stat.) ± 0.014 (sys.) ps
- SELEX observed Ξ_{cc}^+ in the decays $\Lambda_c^+ K^- \pi^+$ and pD^+K^- with mass of 3518.17 ± 1.7 MeV, about 103 MeV lower
- Mass expected to be similar for Ξ_{cc}^+ and Ξ_{cc}^{++}

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$

PRL 121 (2018) 162002

Baryons Modes	Br	secondary decay Br's	tracks		$u \longrightarrow u$
Ξ_{cc}^{++} $\Lambda_c^+ K^- \pi^-$	$^{+}\pi^{+}$ $\mathcal{O}(10\%)$	×6%	6	$arepsilon_{cc}^{++}$ ($\left\{ \begin{array}{c} c \longrightarrow c \end{array} ight\} egin{array}{c} arphi^+ arphi^- arphi^+ arphi^- arphi^+ arphi^$
$\Xi_c^+\pi^+$	$(0.2 \sim 5.2)\%$	×(1.6±0.5)%	4		
$\Lambda_c^+\pi^+$	$(0.1 \sim 0.6)\%$	×6%	4		$W^+ \checkmark \bar{d}^{+} \pi^+$
pD^+	$(0.1 \sim 0.6)\%$	×9%	4		

越中心

- Decay channel $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ observed using 1.7 fb⁻¹ data at 13 TeV
- Signal: 91 \pm 20 compared to 289 \pm 35 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ with same data
- Branching ratio measured to be: $\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \times \mathcal{B}(\Xi_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \times \mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)}$ $= 0.035 \pm 0.009 \text{ (stat.)} \times 0.003 \text{ (sys.)}$
- Agreed well with expectations

Search for $\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$

JHEP 10 (2019) 024

- Similar Feynman diagram between $\Xi_{cc}^{++} \rightarrow$ $\Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_{cc}^{++} \to D^+ p K^- \pi^+$ $B(D^{+} \rightarrow 0.58 \pm 0.16)\%$ None observed, upper limits set: $\frac{B(\Xi_{cc}^{++} \rightarrow D^{+}pK^{-}\pi^{+})}{B(\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} < 1.7(2.1) \times 10^{-2} \text{ at } 90(95)\% \text{ CL}$ Long distance effects may be important here
 tuned for results with more LHCb 13 TeV 120 +Data -Background 1.7 fb⁻¹ at 13 TeV

More properties for Ξ_{cc}^{++}

• The production of Ξ_{cc}^{++} measured using 1.7 fb⁻¹ data at 13 TeV in the LHCb range (4 < $p_T < 15$ GeV and 2.0 < y < 4.5) w.r.t prompt production of Λ_c^+

$$\frac{\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}{\sigma(\Lambda_c^+)} = (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$$

• Note that the predicted $\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \sim 10\%$, and B_c production around 0.3%, similar between the two

• An updated mass measurement with full Run2 data (5.6 fb⁻¹) performed using $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ results in 3621.55 \pm 0.23 (stat.) \pm 0.30 (sys.) MeV

Search for Ξ_{cc}^+

- The mass of ±⁺_{cc} observed by SELEX and the mass of ±⁺⁺_{cc} observed by LHCb differ by 103 MeV, interesting to find it also in LHCb
- Searches performed using full Run1 and Run2 data (9.0 fb⁻¹), none found and upper limits set

CPV measurements by LHCb-China group

- CKM angle γ measurements
- Precise measurements of angle ϕ_s
- CPV in charmless B decays
- Search for CPV in b-baryon decays
- Search for CPV in charm decays
- Global fit of CKM matrix

CPV in charmless B decays

- Interesting CPV pattern seen on Dalitz plot of $B \rightarrow h'^+ h^+ h^-$, $h = K, \pi$
- Dalitz plot analysis needed to shed more light on understanding nature of these CPV

• Now, amplitude analyses $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ with much larger statistics than previous

越中小

B-factory analyses, has been performed

CPV over Dalitz plot

• Two competitive contributions needed to have CPV

 $\bar{A} = a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)} \qquad \bar{A} = a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)}$

$$A_{CP} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \propto \sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

• Distributions over PHSP offer possibilities to exam different sources of CPV

卓越中心

Dalitz plot analysis with CPV

• Amplitude with CPV is modelled as

$$A(\Phi_3) = \sum_i A_i(\Phi_3) = \sum_i c_i F_i(\Phi_3)$$
 Strong dynamics
$$\bar{A}(\bar{\Phi}_3) = \sum_i \bar{c}_i F_i(\Phi_3)$$
 Strong + weak

• CPV then described as

$$c_i = (x_i + \Delta x_i) + i(y_i + \Delta y_i)$$

$$\bar{c}_i = (x_i - \Delta x_i) + i(y_i - \Delta y_i)$$

• Observables:

$$\mathcal{F}_{i} \equiv \frac{\int d\Phi_{3} |A_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |A(\Phi_{3})|^{2} + \int d\Phi_{3} |\bar{A}(\Phi_{3})|^{2}} \qquad \mathcal{A}_{CP}^{i} \equiv \frac{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} - \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}$$

卓越中心 钱文斌

Dalitz plot analysis with $B ightarrow \pi \pi \pi$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

• Dalitz plot analysis with 20594 ±1569 events (3 fb⁻¹ data)

• Resonant contributions:

 $\rho - \omega, f_0(500), f_0(980)$ region: S-P wave interference $f_2(1270)$ region: D-S, P wave interference High mass: KK- $\pi\pi$ rescattering

• Three different methods to describe S-wave: Isobar model, K-Matrix approach, quasi model independent approach

S-wave results

2019/12/06

• Good agreement between the three approaches

越中心

文斌

• Fit fractions:

Component	lsobar	K-matrix	QMI
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 0.7 \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$
$\omega(782)$	$0.50 \pm 0.03 \pm 0.03 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57 \pm 0.10 \pm 0.12 \pm 0.12$
$f_2(1270)$	$9.0 \pm 0.3 \pm 0.8 \pm 1.4$	$9.3 \pm 0.4 \pm 0.6 \pm 2.4$	$9.6 \pm 0.4 \pm 0.7 \pm 3.9$
$ ho(1450)^{0}$	$5.2 \pm 0.3 \pm 0.4 \pm 1.9$	$10.5 \pm 0.7 \pm 0.8 \pm 4.5$	$7.4 \pm 0.5 \pm 3.9 \pm 1.1$
$\rho_3(1690)^0$	$0.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.0 \pm 0.1 \pm 0.5 \pm 0.1$
S-wave	$25.4 \pm 0.5 \pm 0.7 \pm 3.6$	$25.7 \pm 0.6 \pm 2.6 \pm 1.4$	$26.8 \ \pm 0.7 \ \pm 2.0 \ \pm 1.0$

- Dominant contributions from S-wave and $\rho(770)$
- CP asymmetries:

Component	lsobar	K-matrix	QMI
$ ho(770)^{0}$	$+0.7 \pm 1.1 \pm 1.2 \pm 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm 1.7 \pm 2.3 \pm 1.6$
$\omega(782)$	$-4.8 \pm 6.5 \pm 6.6 \pm 3.5$	$-6.2 \pm 8.4 \pm 5.6 \pm 8.1$	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm 6.1 \pm 3.6 \pm 4.4$	$+42.8 \pm 4.1 \pm 2.1 \pm 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$ ho(1450)^{0}$	$-12.9 \pm 3.3 \pm 7.0 \pm 35.7$	$+9.0 \pm 6.0 \pm 10.8 \pm 45.7$	$-15.5 \pm 7.3 \pm 14.3 \pm 32.2$
$ ho_3(1690)^0$	$-80.1 \pm 11.4 \pm 13.5 \pm 24.1$	$-35.7 \pm 10.8 \pm 8.5 \pm 35.9$	$-93.2 \pm 6.8 \pm 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 2.1 \pm 1.9$	$+15.8 \pm 2.6 \pm 2.1 \pm 6.9$	$+15.0 \pm 2.7 \pm 4.2 \pm 7.0$

卓越中心 钱文斌

• Large CPV from S-wave and $f_2(1270)$

New CPV pattern

• CPV around $\rho(770)$ pole well described by the three S-wave models

- Over 25σ significance for CPV due to S-P interference, first observation
- Sign-flip due to phase change and helicity angle change
- First observation of large CPV in decays with tensor

LHCb Tier2

- LHCb Tier2 set up late last year with 1008 CPU cores and 360 TB storage
- In the past year, 497K jobs running on site
- Data exchange with ~40 sites over the world
- In coming 71.1 TB and out going 1.53 PB
- Many thanks for IHEP computing center and CAS excellence in particle

Conclusion

- Many interesting results from LHCb-China group on spectroscopy and CPV studies
- Many thanks for the supports from CAS excellence in particle physics

Thank you for your attention

