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Introduction

% Higgs boson which is predicted in the Standard Model(SM) was detected at the Large
Hadron Collider(LHC).
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The SM can explain the current results of the collider experiments below O(1) TeV.



Introduction

% However, phenomena beyond the SM have been reported. A V(@)
SM
e Dark matter e Neutrino oscillations
e Baryon asymmetry of the Universe (BAU)
— The SM has to be extended. -
o) ()
% The Higgs sector is still vague.
. Var(@)=u’ 0"+ Ao’
e The number of the Higgs field ? (12 < 0)
e The Higgs field is elementary or composed ?

e Dynamics of the electroweak symmetry breaking (EWSB) ?

— We can consider the various extended Higgs models

K/

% The extended Higgs models can explain phenomena beond the SM.
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Sakharov’s ==
conditions

[A. D. Sakharov, Pisma Zh. Eksgf
Teor. Fiz. 5, 32 (1967)]

—

Verr(p, T) = D(T — To)¢® + (e — ET)¢” +

Introduction

% Electroweak Baryogenesis (EWBG) 1s a senario explaining BAU.

Potential at high

Baryon number violation
Veff( ®,7) temperature

— Sphaleron process

C and CP violation
— Extended Higgs sector

Potential at critical

ey - temperature T,
Departure from equilibrium

— Strongly first order electroweak phase
transition (1st EWPT) (¢ /T_=1)

AT)
4
2E el E : Loop effects of bosons

4
@ Potential at 0 temperature

T<T,

T 1 ET e : Mixing effects at the tree level

[Y. Aoki, F. Csikor, Z. Fodor and A. Ukawa, Phys. Rev.

The SM cannot satisfy the condition of strongly 1st EWPT . /T i 21 . D60, 013001 (1999)]

K/

¢ We can realize strongly 1st EWPT by extended Higgs models. 4




Introduction
% EBlectroweak Baryogenesis (EWBG) 1s a senario explaining BAU.

gum—

e Baryon number violation Potential at high
, V_ (P, T)
Sakharov’s = — Sphaleron process ef temperature

conditions e C and CP violation T=ty

[A. D. Sakharov, Pisma Zh, Eks] — Extended Higgs sector Potential at critical /

In this talk, we discuss the testability of extended Higgs model with strongly Ist EWPT by
collider and gravitational wave observation experiments.

¢c 2E ed E : Loop effects of bosons \/T<Tc

Ig 4 ET e : Mixing effects at the tree level
[Y. Aoki, F. Csikor, Z. Fodor and A. Ukawa, Phys. Rev.

The SM cannot satisfy the condition of strongly 1st EWPT ¢ /T 21 . 6o 013001 (1999

K/

¢ We can realize strongly 1st EWPT by extended Higgs models. 5
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Testability of the model with ¢_/T_21

% We discuss the testability of 2 Higgs doublet model with ¢ /T 21 by collider
experiments.

m@z ~/ll.v2+M2

A/leDM//ISM = (/1121/131DM _ ﬂi/%)/ﬂSM

hhh hhh hhh

Vew = m%lq)l'Q + mg|(1>2]2 — (m%‘IJIQQ + hC)

A Ay : As 4
+71|<1>1|4 - ?|<1>2|4 + A3| @1 [2|@o|* + Ag| D] Do |* + b(@’{%)? + h.c.] 600/
A
Input parameters : m?, m3, m3, A\, Aa, Az, Ay, A5

500+
— v, M*(= 2m2/sin 8), my, my, ma, my+, tan 8 = (®y) /(P4), sin(B — )

Vacuum expactation Masses of new scalars Mixing angle for mass
value (246GeV) matrix for & and H

400!
300}
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The model can realize strongly 1st EWPT when AAh coupling is about

10% larger than the SM one. [S-Kanemura, Y. Okada, E. Senaha, Physics Letters B 606 361
(2005)]

< ILC with /s =1 TeV and L=5000 fb"! can measure the 2hh coupling at

about 10% accuracy. [K. Fujii et al., arXiv:1506.05992] 0 [ : : . . : ]

0 50 100 150 200 250 300
M[GeV]

200!

mg [GGV] ( Mass of new particles )

100!

% However, the center of mass energy of ILC is 250 GeV under the current
plan. (hhh coupling will be precisely measured in the distant future.)
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Testability of the model with ¢_/T_21

Virew = mi|®1|* + m3|®s|*> — (m3®]®s + hoc.)
A A A
+71|<1>1|4 - 72|<1>2|4 + Aa| D12 ®o|? + Ag| DI, |2 + H‘(@’{@Q)? + h.c.]

2 2

Input parameters : m?, m3, m3, A\, Aa, Az, Ay, A5

— U ]\42(: 2m§/ Sinﬂ)? Mp, Mg, MA, Mg+, t‘a‘n/B - <¢2>/<¢1>7 Sin(ﬁ — OZ)

Vacuum expactation Masses of new scalars

value (246GeV)

The model can realize strongly 1st EWPT when AAh coupling is about

10% larger than the SM one. [S-Kanemura, Y. Okada, E. Senaha, Physics Letters B 606 361

(2005)]

ILC with /s =1 TeV and L=5000 fb’!

about 10% accuracy- [K. Fujii et al., arXiv:1

However, the center of mass energy of ILC is 25

We discuss the testability of 2 Higgs doublet model with ¢ /T 21 by collider

experiments.

Mixing angle for mass
matrix for 2 and H

G CV] ( Mass of new particles )

mq)z ~iiv2+M2

2HDM 1 ySM _ 2HDM SM SM
A/lhhh / Ahhh = (/lhhh o Ahhh)/ /lhhh

L
L 1A
________
-
-

600’ """"""""""""""" SM=500%

Measurements of gravitational

wave can be substituted.

Tl = 125 GeV]]
v =My =My =My

sin(f— @) = tanf = 1 ]

100 150 200 250 300

1 UIv vuriviic

plan. (hhh coupling will be precisely measured in the distant future.)

M[GeV]



Measurement of gravitational wave

% If the model realizes first-order phase transition in the early universe, the gravitational waves
(GWs) are produced by the phase transition.

%  Whatis the GW? — GW is disturbance in the curvature of spacetime.

The disturbance can be observed by difference in phase change of laser for the interferometer.

ENRPEFREKL —P—TFTHAERNET ENKR2E[MPEC Y THBPRRL ET
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[By homepage of KAGRA]

If GWs come to the interferometers, the interfered fringe changes by extending and shrinking the
lengths of the arms. 9
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GW interferometers

V( Power Spectral Density / Hz')

Measurement of gravitational wave

10

10-18

1 0-22

1 0-26

(They can detect the GW from the ]

%iversesuch as Ist EWPT.
Space-based GWs interferometers

LISA, DECIGO, ... )10* - 10° H
( ) z They can detect the GW from

LISA [B.S. Sathyaprakash and B. F. astronomical origin.

J

Schutz, Living Rev. Rel.12, 2 (2009)]

Ground-based GWs interferometers

(LIGO, KAGRA, Advanced Virgo, ...)
10" - 10* Hz

aL.IGO [B. P.|Abbott et al., Living
Rev. Rel. 21, nq. 1, 3 (2018)]

DECIGO [K. Yagi and N.
Seto, PRD §3, 044011 (2011)]

GW150914 [B. P. Abbott et al.,

—_

http://gwplotter.com/ PRL. 116, no. 6, 061102 (2016)]
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Measurement of gravitational wave

NS 1
%  GW interferometers (They can detect the GW from the ]

10714 earlyyuniversesuch as 1st EWPT.
Space-based GWs interferometers

(LISA, DECIGO, ... )10* - 10° Hz

They can detect the GW from J

LISA [B.S. Sathyaprakash and B. F. astronomical origin.

g 1 0-18 Schutz, Living Rev. Rel.12, 2 (2009)]
_.g‘ Ground-based GWs interfefometers
)
We may test the model with strongly 1st EWPT by LISA and N
DECIGO (space-based GWs interferometer). [

Seto, PRD 85044011 (2011)] E—

GW150914 [B. P. Abbott et al.,
http://gwplotter.com/ PRL. 116, no. 6, 061102 (2016)]
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Measurement of gravitational wave

<  GW interferometers (
1 0-14

They can detect the GW from the J

earlyyuniversesuch as Ist EWPT.
Space-based GWs interferometers

(LISA, DECIGO, ... )10 - 10° Hz

They can detect the GW from J

LISA [B.S. Sathyaprakash and B. F. astronomical origin.

Schutz, Living Rev. Rel.12, 2 (2009)]

10-18

psity / Hz)

Ground-based GWs interferometers

We may test the model with strongly 1st EWPT by LISA and -
DECIGO (space-based GWs interferometer). e

Seto, PRD M’%UM (Z0TT)] —

How does the GW from the phase transition occur?

10 TO TU 10 104
Frequency / Hz
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GW from 1st EWPT

<  What is 1st EWPT?

The order parameter ¢ discontinuously moves from the origin of the
potential to the bottom (from false vacuum to true vacuum).

*Nucleation rate of one critical bubble per unit time and per unit volume
[S. Coleman, “Aspects of Symmetry” ], [C. Grojean and G. Servant, Phys. Rev. D 75, 043507 (2007)]

F(T) ~ T4€_w [53 = /d37” [%(6%)2 + Veff(%,T)] J

It depends on the theory.

False vacuum

(d)):(]

Verr (@, T')
T'<Tc

lOO‘p

Tunpegjp,
effec t

False/
vacuum

True
vacuum

Y ——— The space filled with the false vacuum (<¢>=0).

13



GW from 1st EWPT

<  What is 1st EWPT? Verr(@.T')

The order parameter ¢ discontinuously moves from the origin of the
potential to the bottom (from false vacuum to true vacuum).

*Nucleation rate of one critical bubble per unit time and per unit volume

[S. Coleman, “Aspects of Symmetry” ], [C. Grojean and G. Servant, Phys. Rev. D 75, 043507 (2007)]
S3(T) 1
4 —=23-2 3 VIRY
F(T) ~/ T é T Sy = d’r Q(chb) + V;ﬁ'((Pb,T) b 100®P
I Tunpey;
It depends on the theory. ffoy ing
False Trus
vacuum vacuum

The bubble for true vacuum (<¢>#0) nucleates in the space

filled with false vacuum (<p>=0) by the tunneling effect.

False vacuum

(®)=0

14



GW from 1st EWPT

<  What is 1st EWPT?

The order parameter ¢ discontinuously moves from the origin of the
potential to the bottom (from false vacuum to true vacuum).

*Nucleation rate of one critical bubble per unit time and per unit volume

F(T) ~ T%‘% [53 = /d3T [%(6%)2 + Veg (5, T)

[S. Coleman, “Aspects of Symmetry” ], [C. Grojean and G. Servant, Phys. Rev. D 75, 043507 (2007)] \

False vacuum

(®)=0 |

Verr(,T')
T'<Tc

Gravitational waves [h,, ~

lUO‘p

Tunpegjp,
effec t

Sources of GWs

1. Compression wave of plasma

3. Collision of wall

T

GWs occur by collision of bubbles. 15



Parameters characterizing GWs from 1st EWPT

% Velocity of bubble wall vy (In this time, we take it as a free parameter.)

«  Transition temperature T, (Temperature where i T) = O O
C
EWPT is complete)
4 —
(H : the Hubble parameter) E 1

O/ 00?P
% o and B parameter Unne ling Latent heat released

: effe by EWPT

a = Normalized latent heat released by EWPT, “ Y

B = 1/(Duration of the EWPT)

0= e(Ty) 3

_1dr Latent heat : €(T) = AV 4 ¢(T) — O Veit U=F— Tg_?
prad(Tt)

oT
I dt

t=t, Radiative energy density : p_,

T, o and f parameters can be fixed by the potential (These depend on the model).



Parameters characterizing GWs from 1st EWPT

% Velocity of bubble wall vy (In this time, we take it as a free parameter.)

.. Verr(@,T'
% Transition temperature T . (Temperature where i T) -
C
EWPT is complete)
4 _
L/H |y, =1
(H : the Hubble parameter) E /
% o and B parameter e % ~~__
e/ing eff,
a = Normalized latent heat released by EWPT, ot
B = 1/(Duration of the EWPT)
ce(T) = AVoso(T) — T28Vess OF
e(Tt) 3 1dDl° Latent heat : 6( ) = eff( ) 9T U=F — Ta_T
0= ————— Y ——
prad (Tt) L' dt . Radiative energy density : p_,

T, o and f parameters can be fixed by the potential (These depend on the model).



GW from 1st EWPT

7

% The GW spectrum from 1stOPT need complicated numerical simulations.

— We use apploximately fitting formula.
— For example... Compression wave of thermal plasma

107°
[C. Caprini, et al., J.Cosmol. Astropart. Phys. 1604(04)(2016) 01.]
. 7/2
(f) X (_f/f )3 — : 10-12°
Ve i i VT T
2 1/3 LS|
cak of the i o~ - Ky 100 10
:pe:trui:h g)comph2 25 265 X ].O 6’Ub,8 L (1 n > <_t) ; c
a 9«
10—18
Peak of ~ n gt 1/6
s 2 1.9%10°° Hz— =
reqeney Jeomp . “v B (100 GeV) (100) _
3 621 ‘ :
B = 5/ H K : efficiency factor 107 107!

Frequency [HZ]
The sensitivity regions |ISA: [arXiv:1512.06239 [astro-ph.COJ], DECIGO: [Class. Quant. Grav. 28, 094011(2011)]

T, ooand B can be fixed by the observation of the GW spectrum — Model information can be obtained by the measurement!



GW from 1st EWPT

7

% The GW spectrum from 1stOPT need complicated numerical simulations.

— We use apploximately fitting formula.
|, For example... Compression wave of thermal plasma

1070
[C. Caprini, et al., J.Cosmol. Astropart. Phys. 1604(04)(2016) 01.]
7/2 Ah2 &)
L o319 = 1.2 LD LB i & e S R 1  Haich. Sl S

The extended Higgs model with strongly 1st EWPT may be tested by
collider and GW observation experiments.

o~ 3 7 < va 10_21‘ ‘ E
B=06/H K : efficiency factor 107 107!

Frequency [HZ]

The sensitivity regions |ISA: [arXiv:1512.06239 [astro-ph.COJ], DECIGO: [Class. Quant. Grav. 28, 094011(2011)]

T, ooand B can be fixed by the observation of the GW spectrum — Model information can be obtained by the measurement!
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Strongly 1st EWPT for extended Higgs model

% Model with strongly 1st EWPT
)\(T) 3 e : tree-level effects

Veff(% T) — D(T — TO)QO2 T (e_— ET)SO?) I T E : thermal loop effect of bosons

(Potential with high temperature approximation)

I Me) e

e The model in which the loop effects of bosons E is mainly related to 1st EWPT

e The model in which the mixing effects e at tree-level is mainly related to 1st EWPT

We discuss the model with one real isospin singlet scalar field S as an example (this model
is one of the simplest model with small e effects).

21



Model with a real isospin singlet scalar field

[K. H., M. Kakizaki, S. Kanemura, P. Ko and T. Matsui, Phys. Lett. B766 (2017) 49 ]

¢ This model is the SM with one isospin singlet scalar field S.

/7

% Higgs potential

A o oo . o8
Vo= —p3|2 + Xa| @' + pas|B*S + [ @[*S? + S + —52 Fogt 4 st

The SM parts
An additional scalar boson parts

(i) e w-(8) 9=

e Stationary condition of the potential

oV
0P,

—0) —)
¢1 a¢2 S 59



Model with a real isospin singlet scalar field

[K. H., M. Kakizaki, S. Kanemura, P. Ko and T. Matsui, Phys. Lett. B766 (2017) 49 ]

¢ Diagonalized mass matrix for SM-like Higgs /# and additional scalar H

h\  [cos® —sinf@\ (¢
H) \sinf cos@ b9

mj 0\ _ [ cosf sinf\ (m? m\ (cosf —sinf
0 mjy) = \—sinf cosf) \m3, mi ) \sinf cosé
/

Mass matrix for h and H B 0 Ve 7=0

Mass matrix for ¢  and ¢ , m?
! : a‘ﬁi@@j

I

¢1 :U7¢2 =vs

% Independent parameters of the model
pqy )\qy pq)sy )\q)sy “S’ mS’ “,S’ 7\5 -V (246G€V), mh(125G€V), Vg, Mg, 9, ,Lts,/.l{g s UDS

(Parameters in tree-level potential) 3



Model with a real isospin singlet scalar field

[K. H., M. Kakizaki, S. Kanemura, P. Ko and T. Matsui, Phys. Lett. B766 (2017) 49 ]

% Scaling factors of the Higgs boson coupling

g,xy - Higgs coupling for X,
_ 8hxx
Kx = Toor . RS By = By = 808 0 V' : gauge boson,
8 : i
hXX F : fermion

(It is the ratio between the coupling of the real Higgs singlet model and one of the SM.)
% The deviation for #hh coupling
Alppn )\hhh—% 3 a3Veﬁ,:r=0 9 93%&1:0 9 83‘/;&1:0 3 03Veff,T=0
Mok Minn M =0\ o8 ) 90\ Btang ) TN Bpgo ) T\ 08

These Higgs couplings can be precisely measured by future collider experiments.
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EWPT of the model with one singlet scalar field

% EWPT occurs in the space of two order parameters for doublet and singlet scalar.

SOSA SYM ¢y =g =0 (False vacuum)

(Singlet scalar) EW ¢p = 246GeV, g # 0 ( True vacuum )
|

It is the EWPT for one

order parameter. EW (1}, Us)

& —

o - . SO 7 (Doublet scalar)

* ¢ /T of the model with one singlet scalar field for Path A and B.

[S. Profumo, M. J. Ramsey-Musolf and G. Shaughnessy, JHEP 0708, 010 (2007)]

¢ L/ . .
oc/Te > — A(T ) (,uq,s cos? o + %S sin? oz) sina/Te

These are tree-level effects. 25



Model with a real isospin singlet scalar field

7/

% The benchmark point and scanned range 1-00 | vs=80 GeV, js=0 GeV, jos =80 GeV, pis’=-30GeV

‘vq, [GCVHUS [GoVHmh [GCVH Basg [GCVH B [GGVH Bg [GeV]HmH [GCVHQ [degrcesH
| 2462 | 90 | 1255 | —80 | —30 | 0 [ /[160, 240]| [-45,0] | 0.95

[K. Fuyuto and E. Senaha, Phys. Rev. D 90, 015015 (2014)]

(We analyze the EWPT in multi-field space by public code 0.0

"CosmoTransitions".) .

[C. L. Wainwright, Comput. Phys. Commun. 183, 2006 (2012)] %
> o085

AHSM _ /\SM 2hxX
I K= w e = 22 . B B v
M K= Ky = Kp = cosf
Newh ghSXX , 4 F
0.80"
% The Higgs boson couplings deviate from the SM ones,
when the model can realize strongly 1st EWPT. 160 180 200 220 240

my[GeV]

Also detectable GWs from the EWPT may be able to occur. (Mass of new particle )



Model with a real isospin singlet scalar field

% We show the parameter region where the detectable
GW spectrum occurs. 107

10712

10718

Qewh?

10718

. o - | <>
Frequency [H) 0.85] S7
% We conclude that the model with strongly 1st P
EWPT can be complementarily tested by the e
measurements of hff and hVV couplings at LHC, 080 P
ones of hhh coupling at ILC and ones of the o o o
spectrum of the GW at DECIGO and LISA. 10 160 2% 220

[K. H. , M. Kakizaki, S. Kanemura, P. Ko and T. Matsui, Phys. Lett. B766 (2017) 49 ]

1.00 =90 GeV, us=0 GeV, pos = -80 GeV, ps'=-30GeV

240
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Testability of the model by measurements of GW

% We use the measurements of GW spectrum to examine the model parameters.

However... 1o~
N
We assume that “the information can be completely obtained by ., Sensitivity
the measurements of GWs when the peak of the spectrum is in %Q\@'O/'

the sensitivity region”. 10-15.

Qawh?

X/
%%®

We can quantitatively discuss the expected uncertainties in future 1018
space-based interferometers for parameters of the extended models

Spectrum\

162 10!
[K. H., R. Jinno, M. Kakizaki, S. Kanemura, T. Takahashi and M. Takimoto, Phys. Rev. D 99, no. 7, Frequency [Hz]
075011 (2019)

by the Fisher matrix analysis. 102"

(The Fisher matrix corresponds to the inverse of the covariance matrix.) o8



Testability of real Higgs singlet model

1.00; =90 GeV, ﬁs= eV, Fos¥—80 GeV, ys": -30GeV
< Fiducial point (m,;, k) = (166.4 GeV, 0.96) / i

10-°

0.95¢

10712

0.90®

0.85¢

10—21

1073 10°"
Frequency [HZ]

0.80¢

% We can estimate the expected constraints by the Fisher 0 180 00 T R
matrix analysis, which is essentially a Gaussian m[GeV]

approximation of the likelihood function. -



Testability of real Higgs sing
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Akhhh/xmhhSM and detectable GWs are described in
scaling factors (k. and k) and m,,.

AAf\s%h _ Ahhsgﬂi[‘ﬁ% o = ghs_xl\)dc e e i (i il 0.98

hhh hhh 8nxx ° .
< Fiducial point (m,;, k) = (166.4 GeV, 0.96) 0.97
[K. Fujii et al., arXiv:1710.07621 [hep-ex]] 0.96

Direct searches by LHC Run-II :
[A. Tlnicka, T. Robens, and T. Stefaniak, Mod. Phys. Lett. A33 no. 0.95
10n11, (2018) 1830007]

% We may be able to test the model by the synergy 0.94
between measurements of the Higgs boson couplings T

and the spectrum of GW.

[K. H, R. Jinno, M. Kakizaki, S. Kanemura, T. Takahashi and M. Takimoto, Phys. Rev. D 99, no. 7, 075011 (2019)]

0.99

let model

(mH[GeV]’ K, Hus [GeV], VS[GeV] ’ IJS' [GeV])
= (166.4, 0.96, -80, 90 , -30)-

%,

A\ N LISA(10): 1, 3, 10yr
et
‘\2
Fiducial point

(Vg K> My \fixed) /)

- ILC 2506ev\\,~“"
2ab™ (10) [

Vg, U fixed)
60 162 164 166 168 170 172 174

my[GeV]
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Testability of real Higgs sing

7
0’0

Akhhh/xmhhSM and detectable GWs are described in
scaling factors (k. and k) and m,,.

Adpph Anhh=Appt iy = XX 9
Bt T gV, K = Ky = Kp = COS .
< Fiducial point (m,;, k) = (166.4 GeV, 0.96) 0.97

[K. Fujii et al., arXiv:1710.07621 [hep-ex]]

0.96
Direct searches by LHC Run-II :

[A. Ilnicka, T. Robens, and T. Stefaniak, Mod. Phys. Lett. A33 no. 0.95

10n11, (2018) 1830007] '
% We may be able to test the model by the synergy 0.94
between measurements of the Higgs boson couplings T

and the spectrum of GW.

[K. H, R. Jinno, M. Kakizaki, S. Kanemura, T. Takahashi and M. Takimoto, Phys. Rev. D 99, no. 7, 075011 (2019)]

0.99

0.98

let model

(mH[GeV]’ K, Hus [GeV], VS[GeV] ’ IJS' [GeV])
= (166.4, 0.96, -80, 90 , -30)-

%,

ey

LISA(10): 1, 3, 10yr

Fiducial point
(Vg M g fixed)

ILC 25oeev\l“

L 2ab™" (10)

Vg, U fixed)

60 162 164 166 168 170 172 174
my[GeV]
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Summary

The extended Higgs model can explain the phenomena beyond

the Standard model, such as baryon asymmetry of the university. (g9 (melGetl ”H:E?:: l ;ﬁeﬁofo [(iz\é]))
&

0.98 /%5,? Ca LISA(10): 1, 3, 10yr
We have quantitatively discussed the testability of the model v K /
with strongly first-order electroweak phase transition by the 0.97 . mared) fff FEMCERRE
collider and gravitational wave observation experiments. e zsoeev\ }

0.9 , -t (10) Y
We can complementarily test the models by the measurements 0.95
of the various Higgs boson couplings and direct search of new Vs, ' fixed)
boson at the collider experiments and the spectrum of 0'9‘% 60 1.2 164 166 168 170 172 174
gravitational wave at the future space-based interferometers. m[GeV]
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