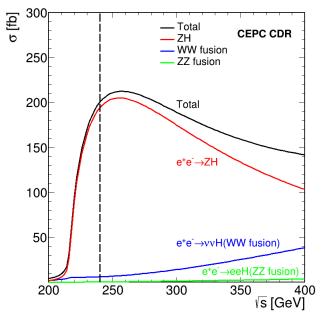
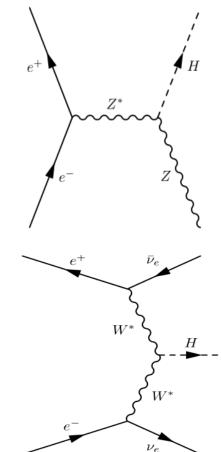

CEPC Higgs @ 240 and 360GeV


Kaili Zhang IHEP

Chicago Workshop on CEPC Sept. 16th, 2019 The University of Chicago

Higgs Physics @ CEPC


CEPC CDR: <u>arxiv:1811.10545</u>

White Paper: <u>arxiv:1810.09037</u>

Combination Report in Oxford;

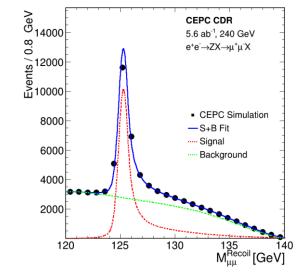
In Concept Design Report: 1M Higgs in 240GeV, 5.6ab⁻¹

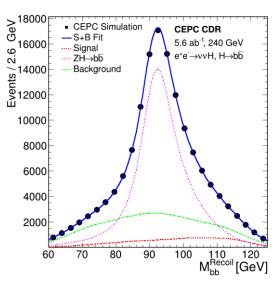
Process	Cross section	Events in 5.6 ab ⁻¹
Higgs bose	on production, cross section	n in fb
$e^+e^- \rightarrow ZH$	196.2	1.10×10^{6}
$e^+e^- \rightarrow \nu_e \bar{\nu}_e H$	6.19	3.47×10^4
$e^+e^- \! \to e^+e^- H$	0.28	1.57×10^{3}
Total	203.7	1.14×10^{6}

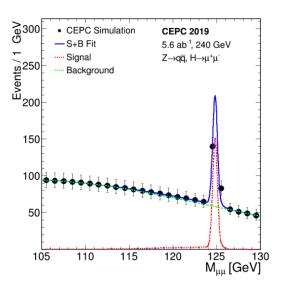
2019/9/16

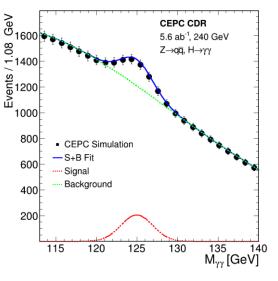
Kaili@Chicago

Existing results:240GeV, 5.6iab

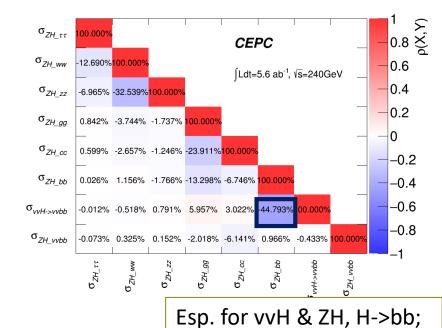

Related publication: $\sigma(ZH)$:1601.05352; bb/cc/gg: 1905.12903;

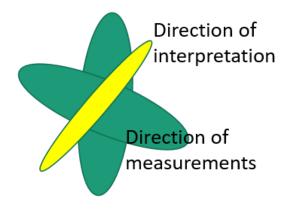

 $\tau\tau$:1903.12327......




(240GeV,5.6ab ⁻¹)	CDR	2019.09
$\sigma(ZH)$	0.50%	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	
$\sigma(ZH) * Br(H \to WW)$	1.0%	
$\sigma(ZH) * Br(H \to ZZ)$	5.1%	
$\sigma(ZH) * Br(H \to \tau\tau)$	0.8%	
$\sigma(ZH) * Br(H \to \gamma \gamma)$	6.8%	5.4%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	12%
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%	
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.2%
$\sigma(ZH) * Br(H \to Z\gamma)$	16%	
Width	2.8%	

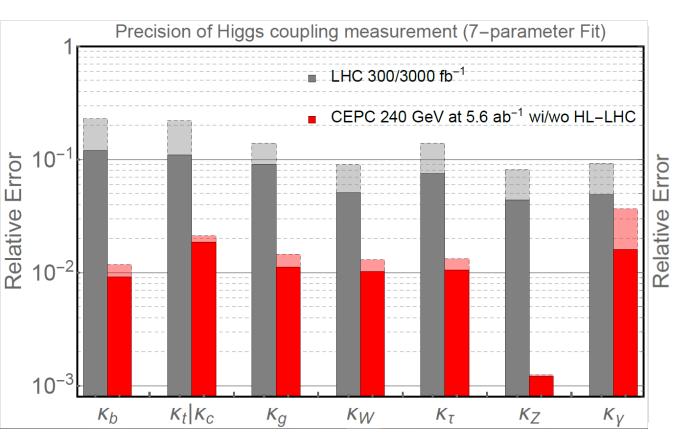
Several channels improved since CDR published. Mostly from better analysis strategy.

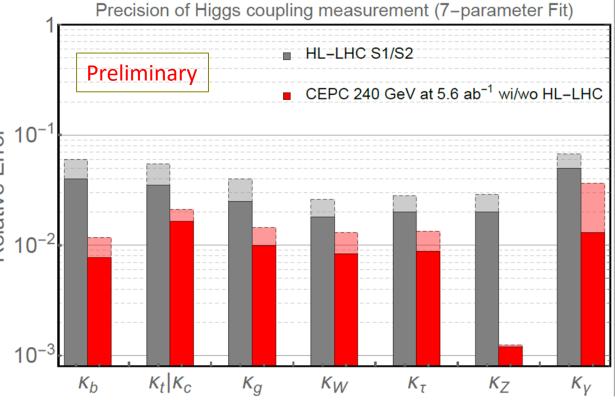




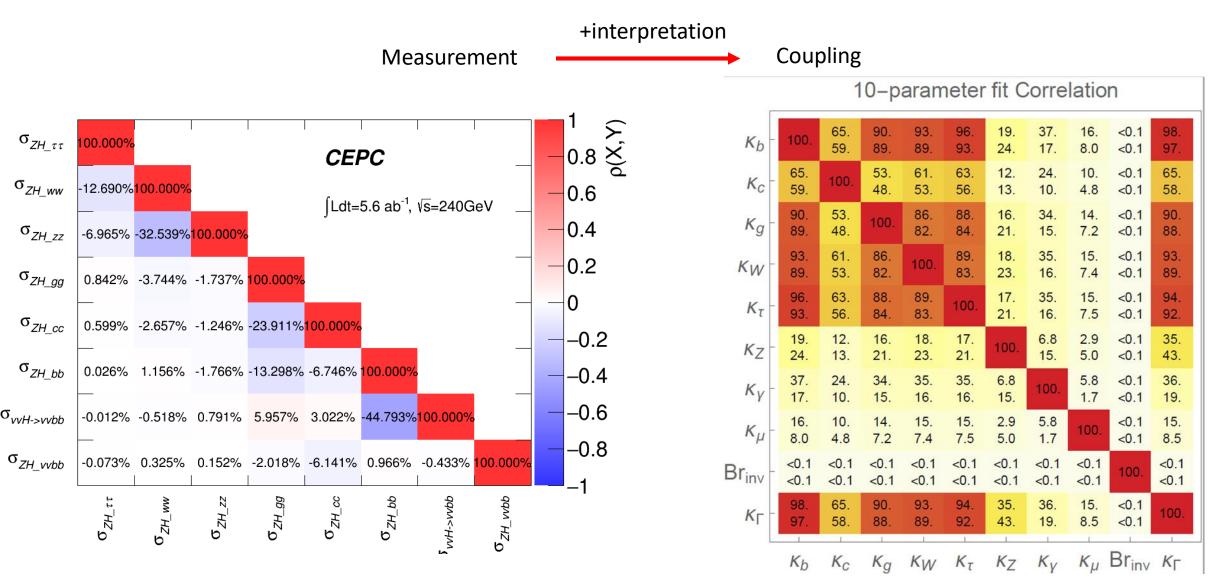
Combination

- Multiple observables for workspace
 - Mass spectrum, BDT output, Flavor tagging likeness
 - Apply multi dimensional fit if possible(no huge correlation)
 - Fixed shape PDF and Asimov Data, μ float
- Simultaneous fit applied to all subchannels
 - Input correlation considered
 - Like Higgs yields overlap. Anti-correlation.
- Higgs width 3.0%
 - Major contributed from $\sigma(vvH) * Br(H \rightarrow bb)$ and $Br(H \rightarrow ZZ)$




Constrained 7- κ fit

Results are updated with latest HL-LHC projections. Slightly different with CDR.


The best κ that CEPC can cinstrain is the κ_Z , 0.5% $\sigma(ZH) \rightarrow 0.25\%\kappa_Z$ All other κ s suffered from Higgs width. ~1.5%.

Correlation

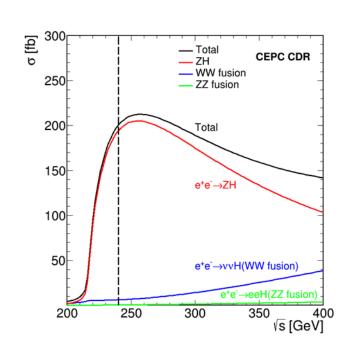
Higher Energy Run

- 350~365GeV Run: worthwhile
 - Over top threshold, EW/EFT/Theoretical part benefits;
 - Larger vvH cross section; Benefit width measurement
 - All constrained by width(2.8%), in current CEPC 240GeV run, Higgs coupling suffered;
 - Fcc-ee/ILC/CLIC all have similar plan
- Temporary benchmark: 2 iab @ 360GeV
 - Test the impact to Higgs measurement
 - 360 saves 10% energy with respect to 365 GeV
 - Not determined yet

The Plan for Fcc-ee (CERN-ACC-2018-0057): 0.2iab 350GeV + 1.5iab 365GeV

Signal Cross Sections

• 240GeV:

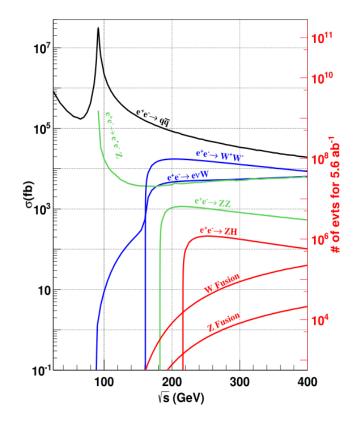

- ZH: 196.9; vvH: 6.2; interference: ~10% of vvH; about 318:10:1; (Z->vv : vvH = 6.4:1)
- interference are ignored in the following extrapolation.

• 350GeV: (vvH ~ 100% Z->vv), (eeH ~ 60% Z->ee)

• 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)

• 365GeV: (vvH ~ 126% Z->vv), (eeH ~ 71% Z->ee)

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Tot	203.6		159.0		
Tot Events	1.14M		0.32M	Kaili@Chicago	



ZZ fusion (2%) also cannot be ignored.

Major background cross sections

pb	240	350	360	365	365/240
$ee(\gamma)$	930	336	325	319	-66%
$\mu\mu(\gamma)$	5.3	2.2	2.1	2.1	-60%
$qq(\gamma)$	54.1	24.7	23.2	22.8	-58%
WW	16.7	10.4	10.0	9.81	-41%
ZZ	1.1	0.66	0.63	0.62	-44%
tt	\	0.155	0.317	0.369	
sZ	4.54	5.72	5.78	5.83	+28%
sW	5.09	5.89	6.00	6.04	+19%

In 240GeV, most channels are 4f bkg dominant, usually ZZ.

 $ee \to t\bar{t} \to WW^*b\bar{b}$ would be 6 jets/ llvv+2jets. Would challenging for jet clustering.

Need further work to validate the performance.

Extrapolation strategy

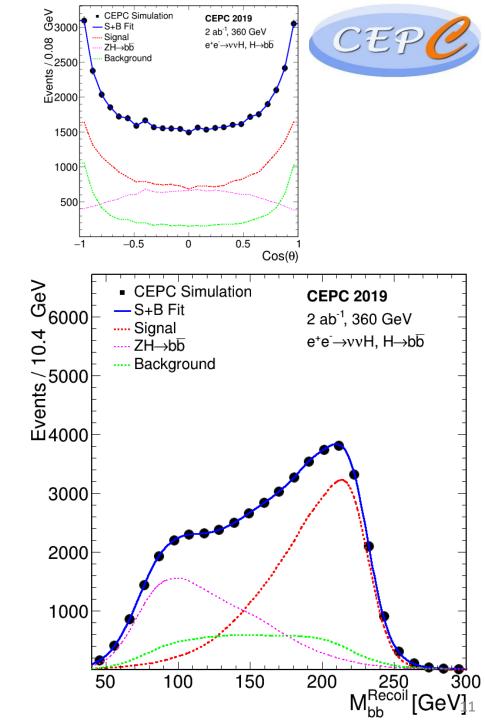
• Yields: scale by cross section;

• Resolution:

• Pick 2 benchmark channels to check the impact

dimuon: worse resolution; from ~0.3GeV to 1GeV;

• diphoton: better resolution; from ~2.5GeV to 2GeV;


• Mass spectrum:

Z/H system would stay the same;

• Try scale factors to describe the phase space shift, like $\frac{2}{3}$ (240/360).

vvH->bb, Full simulation

- See Hao's slides for further information
 - vvH Eff 60+%;
 - Bkg: 4f bkg full simulation, qq scaled from 240 case
 - tt MC not ready; Consider qq +20%;
 - 2d Recoil qq + Cos θ_{qq} Fit
 - Considering ZH constrain:
 - $\sigma(vvH) * Br(H \rightarrow bb):0.79\%$
 - 240GeV: 3%; big improvement;
 - ZH->bb (0.63%) share the anti-correlation -45%.

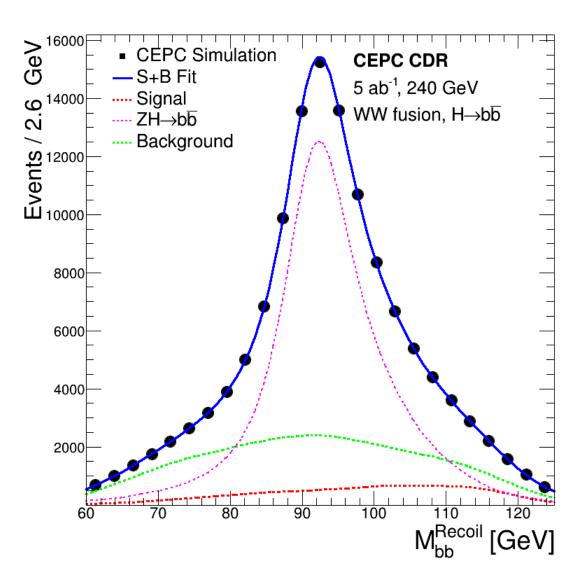
2019/9/16 Kaili@Chicago

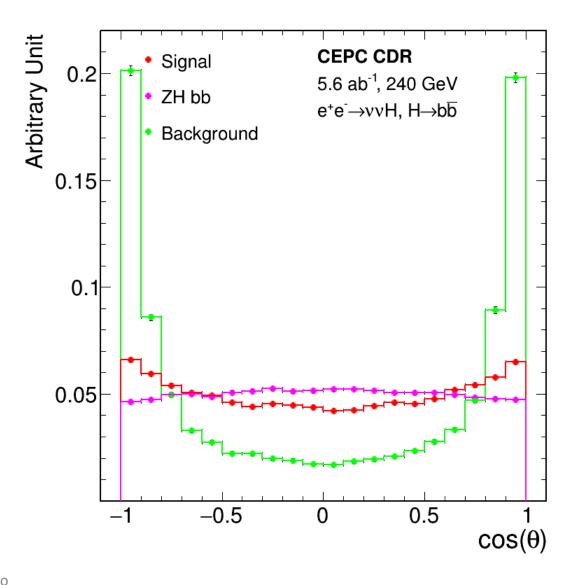
Results

	5.6ab ⁻¹ ,	2ab ⁻¹ ,	1.5ab ⁻¹ ,
	240	360	360
$\sigma(ZH)$	0.50%	1% ?	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.63%	0.71%
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	6.2%	7.2%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	2.4%	2.7%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	2.0%	2.3%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	12%	14%
$\sigma(ZH) * Br(H \to \tau\tau)$	0.8%	1.5%	1.7%
$\sigma(ZH) * Br(H \to \gamma \gamma)$	5.4%	8%	9.2%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	12%	29%	33%
$\sigma(vvH) * Br(H \rightarrow bb)$	3%	0.79%	0.91%
$Br_{upper}(H \rightarrow inv.)$	0.2%	\	\
$\sigma(ZH) * Br(H \to Z\gamma)$	16%	25%	29%
Width	2.8%	~0.8%	

\sqrt{s} (GeV)	240		365		
Luminosity (ab ⁻¹)	5		1.5		
$\delta(\sigma BR)/\sigma BR$ (%)	$HZ \nu \overline{\nu} H$		HZ	$ u\overline{\nu} H$	
$H \to any$	± 0.5		± 0.9		
${ m H} ightarrow { m b} { m ar b}$	± 0.3	± 3.1	± 0.5	± 0.9	
${ m H} ightarrow { m c} { m ar c}$	± 2.2		± 6.5	± 10	
$\mathrm{H} ightarrow \mathrm{gg}$	± 1.9		± 3.5	± 4.5	
$H \to W^+W^-$	± 1.2		± 2.6	± 3.0	
$\mathrm{H} ightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10	
$H \to \tau\tau$	± 0.9		± 1.8	±8	
$ m H ightarrow \gamma \gamma$	± 9.0		± 18	± 22	
$\mid H \rightarrow \mu^+ \mu^-$	±19		± 40		
$\mathrm{H} \rightarrow \mathrm{invisible}$	< 0.3		< 0.6		

Generally, since the extrapolation is not so accurate, results are comparable.


For H $\rightarrow \gamma\gamma$ and H $\rightarrow \mu\mu$, resolution changes considered. Keep diphoton resolution ~(2.5GeV) : 10.2% 2.5GeV to 2GeV: 9.2%

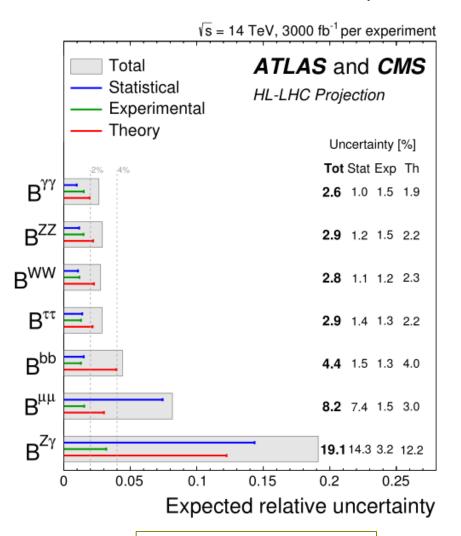

Keep dimuon resolution ~(0.3GeV): 23% 0.3GeV to 1GeV: 29%

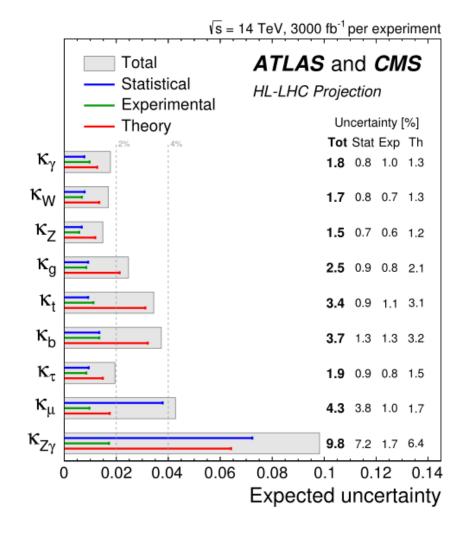
^{*:} $\sigma(ZH)$ estimated as 1%.

vvH->bb 240GeV

Higgs width

Absolute width measurement by 2 dominant channels:


$$\Gamma_H = \frac{\Gamma_{H \to ZZ}}{Br(H \to ZZ)} \propto \frac{\sigma(ZH)}{Br(H \to ZZ)}$$
 and $\Gamma_H = \frac{\Gamma_{H \to bb}}{Br(H \to bb)} \propto \frac{\sigma(\nu\nu H \to \nu\nu bb)}{Br(H \to WW)}$


- Since $\sigma(vvH) * Br(H \rightarrow bb): 0.79\%$
- But width correlated with all channels
 - $vvH \rightarrow vvbb$ and $ZH \rightarrow bb$ -45% -> would worse the result
- Combined fit in 10κ framework:

$$\Delta(\Gamma_H) \approx 0.8\%$$

• HL-LHC S2 estimation; has wonderful prediction on such channels like $\gamma\gamma$.

$$B_{\gamma\gamma}$$
: $\sigma * Br(H \to \gamma\gamma)$;

Kappa Synergy

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3 ₂₄₀	CEPC ₂₅₀	FCC-ee ₂₄₀₊₃₆₅		0+365
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}	$+1.5_{365}$	
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\mathrm{H}}/\Gamma_{\mathrm{H}}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{ m HTT}/g_{ m HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
$δg_{ m H}$ μμ $/g_{ m H}$ μμ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H} \gamma \gamma / g_{\rm H} \gamma \gamma $ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	_	_	_	_	_	_	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0