

Weekly

Kaili 2019.09.23

ATLAS

- <u>https://twiki.cern.ch/twiki/bin/view/Sandbox/BremFitinForward</u>
 - Finished
 - I replied to Nicolas that I am willing to continue the work
- Shift undergoing

Higgs width, CEPC day

chisquarecepc10p[{kb_, kt_, kg_, kw_, ktau_, kz_, kgamma_, kmu_, ktotal_}, lumif_] :=

Sum[((higgsobscepc10p360[kz, kw, kg, kgamma, kb, kt, ktau, kmu, ktotal][[i]] - 1)/higgs360cepc[[i]]) ((higgsobscepc10p360[kz, kw, kg, kgamma, kb, kt, ktau, kmu, ktotal][[j]] - 1)/higgs360cepc[[j]]) 求和

inverseinputcorrelations360[[i, j]]/lumif, {i, 1, Length[higgs360cepc]}, {j, 1, Length[higgs360cepc]}] + 长度

长度

Sum[((higgsobscepc10p240[kz, kw, kg, kgamma, kb, kt, ktau, kmu, ktotal][[i]] - 1)/higgs240cepc[[i]]) ((higgsobscepc10p240[kz, kw, kg, kgamma, kb, kt, ktau, kmu, ktotal][[j]] - 1)/higgs240cepc[[j]]) 求和

inverseinputcorrelations240[[i, j]]/lumif, {i, 1, Length[higgs240cepc]}, {j, 1, Length[higgs240cepc]}] 长度

	240GeV, 5.6ab ⁻¹	360GeV, 2ab ⁻¹	
	ZH	ZH	vvH
any	0.50%	1%	١
$H \rightarrow bb$	0.27%	0.63%	0.76%
$H \rightarrow cc$	3.3%	6.2%	11%
$\mathrm{H} ightarrow \mathrm{gg}$	1.3%	2.4%	3.2%
$H \rightarrow WW$	1.0%	2.0%	3.1%
$H \rightarrow ZZ$	5.1%	12%	13%
$\mathrm{H} \to \tau\tau$	0.8%	1.5%	3%
$H \rightarrow \gamma \gamma$	5.4%	8%	11%
$H \rightarrow \mu \mu$	12%	29%	40%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	١
2019/9/3 Width	2.8%	1.44%	

Reports given by Gang in CEPC day: https://indico.ihep.ac.cn/event/10617/session/3/contribution /14/material/slides/1.pdf

We should combine the 240GeV and 360GeV together. Standalone 360GeV only gives 2.8% for width. While minimize the chi-square for both 240 and 360, the precision goes to 1.44%.

Fcc-ee Synergy

- Using Fcc-ee measurements with our method, gives 1.59%. While they claim 1.3%.
- This is due to the different definition in width, according to Jorge de Blas.
 - Reference: 1905.03764.
- We should use 10-kappaframework to calculate width
 - not only vvH->bb and ZZ channel.

Collider	$\delta\Gamma_H$ [%] from Ref.	Extraction technique standalone result	$\delta\Gamma_H$ [%] kappa-3 fit
ILC ₂₅₀	2.3	EFT fit [3,4]	2.2
ILC500	1.6	EFT fit [3, 4, 14]	1.1
ILC1000	1.4	EFT fit [4]	1.0
CLIC ₃₈₀	4.7	κ-framework [98]	2.5
CLIC ₁₅₀₀	2.6	κ-framework [98]	1.7
CLIC ₃₀₀₀	2.5	κ-framework [98]	1.6
CEPC	2.8	κ-framework [103, 104]	1.7
FCC-ee ₂₄₀	2.7	κ-framework [1]	1.8
FCC-ee ₃₆₅	1.3	κ-framework [1]	1.1

• For conlusion, CEPC and Fcc-ee has comparable performance.

Other hints

- Powerful mathematica tools.
 - Testing the off-diagonal matrix effect about kappa
- Dimuon resolution could be changed from 0.3GeV to ~1.1GeV in 360GeV, according to Gang.
- To separate the ZH and vvH from the generator;
 - Compile and "close" one Feynman diagram from the configuration file.
- ZH, vvH->WW plays a role in calculation.
- (ZH, vvH->WW/ZZ for 4jets)