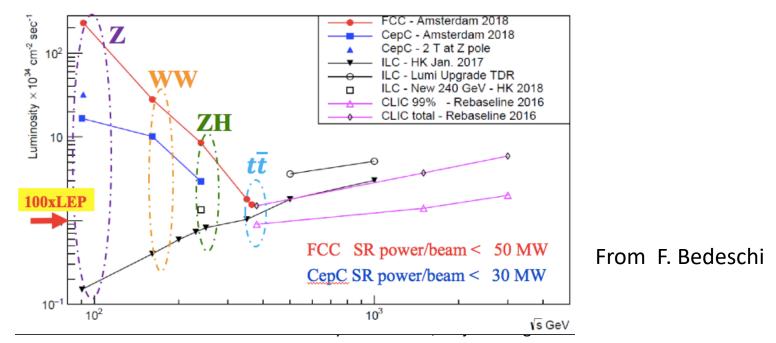


Institute of High Energy Physics Chinese Academy of Sciences

Electroweak and top threshold physics update Zhijun Liang

Institute of High Energy Physics , Chinese Academy of Science


CEPC day meeting

Introduction

- CEPC is Higgs Factory (E_{cms}=240GeV, 10⁶ Higgs)
- CEPC is Z factory(E_{cms}~91GeV) ,electroweak precision physics at Z pole.
 - baseline L=1.6 X 10^{35} cm⁻²s⁻¹, Solenoid =3T, 3X10¹¹ Z boson, two years

L= 3.2 X 10^{35} cm⁻²s⁻¹ , Solenoid =2T , 6X10¹¹ Z boson

- WW threshold scan runs (~160GeV) are also expected.
 - One year, Total luminosity 2.6 ab⁻¹ 14M WW events

e⁺e⁻ Collider Luminosities

Electroweak global fit status

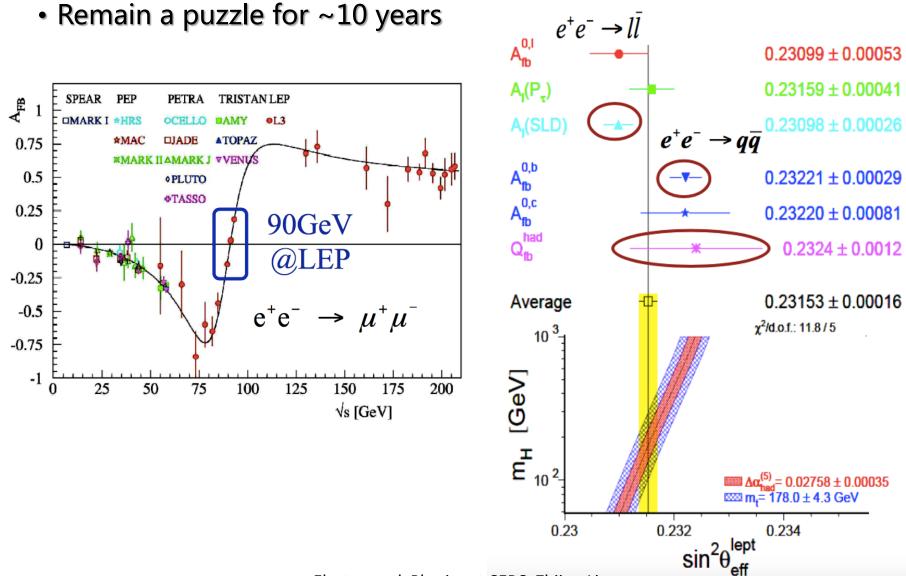
Review of the key electroweak constant

Fundamental constant	δx/x	measurements	
$\alpha = 1/137.035999139(31)$	1×10 ⁻¹⁰	$e^{\pm}g_2$	Zpole
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10-6	$\mu^{\pm} lifetime$	
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10-5	LEP	Z pole
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC	WW run
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD	Z pole
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10-3	Tevatron/LHC	ttbar runs
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC	ZH runs

From PDG2018

Outline

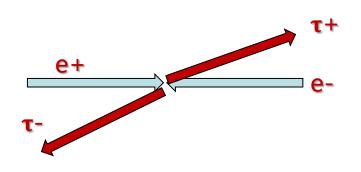
- Introduction to CEPC
- Z pole physics
- W physics
- Top physics


Z mass measurement

- LEP precision : 91.1876±0.0021 GeV
- CEPC goal : 0.5 MeV (CDR) → 0.1MeV (TDR)
 - Beam energy uncertainty is major systematics
 - 5~10% transverse beam polarization is the key
 - Resonant depolarization approach by LEP → <0.1MeV
 - Compton scattering → <0.3 MeV

Weak mixing angle

• Some tension between SLD and LEP results ($\sim 3\sigma$)

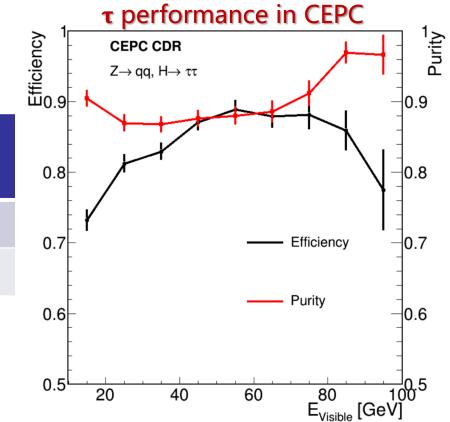


Electroweak Physics at CEPC, Zhijun Liang

lept

sin

A_e and A_τ: tau polarization


- $A_{\rm FB} = \frac{\sigma_{\rm F} \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$ $A_{\rm LR} = \frac{\sigma_{\rm L} \sigma_{\rm R}}{\sigma_{\rm L} + \sigma_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle}$ $A_{\rm LRFB} = \frac{(\sigma_{\rm F} \sigma_{\rm B})_{\rm L} (\sigma_{\rm F} \sigma_{\rm B})_{\rm R}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm L} + (\sigma_{\rm F} + \sigma_{\rm B})_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle}$
- Weak mixing angle $(\sigma_{\rm F} + \sigma_{\rm B})_{\rm L} + (\sigma_{\rm F} + \sigma_{\rm B})_{\rm R} \langle | \mathcal{P}_{\rm e} \rangle$ – extracted from A_e and A_t using tau polarization: more precise

	Number	Purity of	
τ decay mode	selected decays	the samples $(\%)$	
$\tau \to e \nu_e \nu_\tau$	18434	89.4 ± 0.1	$A_{\rm LRFB}$
$ au o \mu u_\mu u_ au$	19811	94.3 ± 0.1	A_{e} and A_{τ}
$\tau \to \pi/K \nu_{\tau}$	14850	73.2 ± 0.1	$P_{\tau}(\cos\theta)$
$\tau \to \rho \nu_{\tau}$	26548	75.4 ± 0.1	
$ au o a_1 \nu_{ au}$	9446	53.2 ± 0.2	

A_e and A_τ in $Z \rightarrow \tau \tau$: systematics

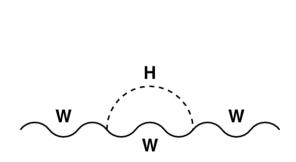
- Current precision
 - A_e : 0.1515 ± 0.0019 (PDG)
 - A_{τ} : 0.143±0.004 (PDG)
- CEPC:
 - A_{τ} : Key systematics is from EM scale, and τ identification
 - A_e limited by statistics

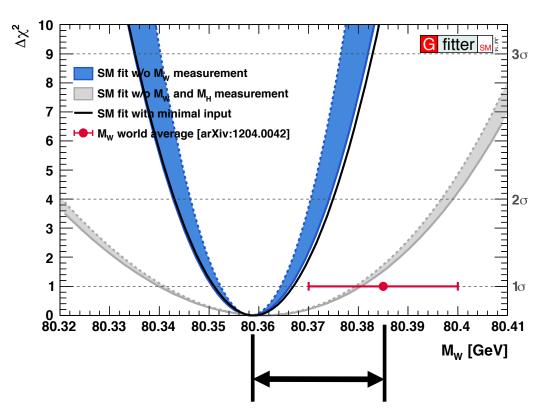
CEPC precision	Rel stat unc.	Rel total unc.
A _τ	2X10 ⁻⁴	5X10 ⁻⁴
A _e	3X10 ⁻⁴	3X10 ⁻⁴

CEPC EWK input to ECFA

	Γ_Z	$\sigma_{ m had}$		$A_e \ (\tau \ \mathrm{pol})$	$A_{\tau} (\tau \text{ pol})$
CEPC	$0.5\mathrm{MeV}$	$0.005\mathrm{nb}$		0.0003	0.0005
FCC-ee	$0.1\mathrm{MeV}$	$0.005\mathrm{nb}$		_	—
	R_e	R_{μ}	R_{τ}	R_b	R_c
CEPC	0.0003	0.0001	0.0002	0.0002	0.001
FCC-ee	0.0003	0.00005	0.0001	0.0003	0.0015
	$A_{ m FB}^{0,e}$	$A^{0,\mu}_{ m FB}$	$A_{ m FB}^{0, au}$	$A_{ m FB}^{0,b}$	$A_{ m FB}^{0,c}$
CEPC	0.005	0.003	0.005	0.001	0.003
FCC-ee	—	_	—	_	—
(fitted)	A_e	A_{μ}	$A_{ au}$	A_b	A_c
CEPC	0.0003	0.003	0.0005	0.001	0.003
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

Table 1: A comparison of CEPC and FCC-ee Z-pole inputs. All uncertainties are relative (normalized to 1) except for Γ_Z and σ_{had} . " τ pol" denotes that the measurement is from τ polarization in $Z \to \tau^+ \tau^-$. The 5 fitted asymmetry observables $(A_{e,\mu,\tau,b,c})$ are derived from a simutanous fit of all the $A_{\rm FB}^{0,}$ observables as well as the A_e and A_{τ} from τ polarization.

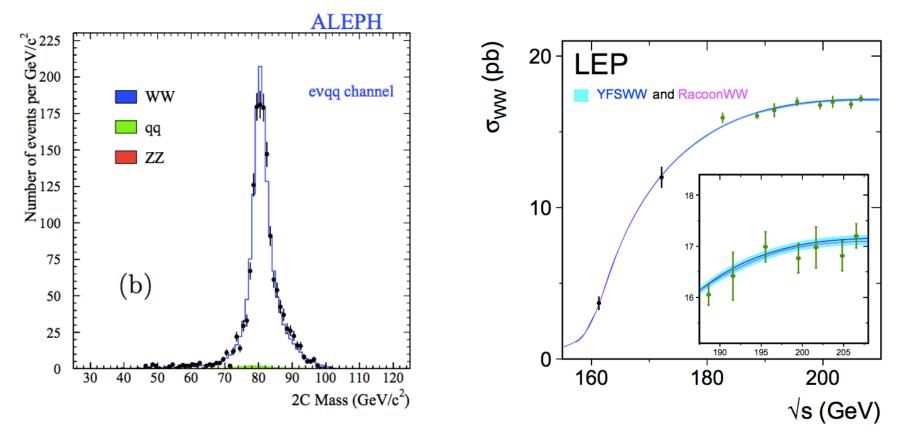

Discrepancy Due to statistics


doing check on systematics (tracker alignment ...) Plan to work with USTC

- Introduction to CEPC
- Z pole physics
- W physics
- Top physics

Motivation

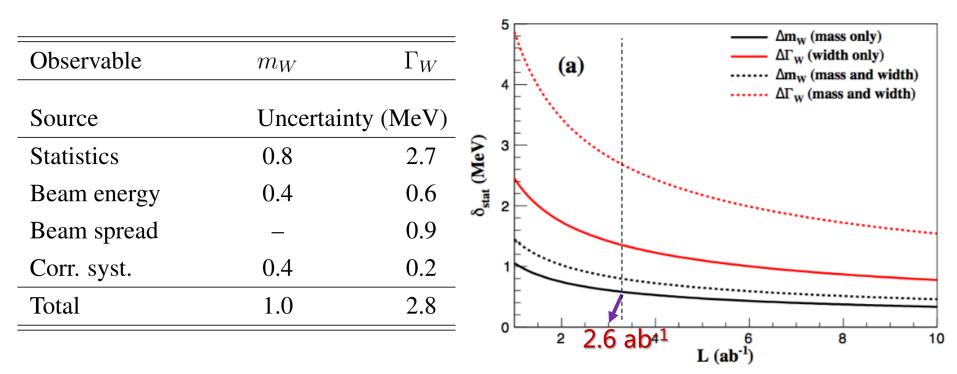
- Small tension in weak mixing angle and W mass.(2σ)
 - Between direct measurement and EWK fit prediction
 - Indirect search for new physics



W mass measurement in lepton collider

• Two approaches to measure W mass at lepton collider:

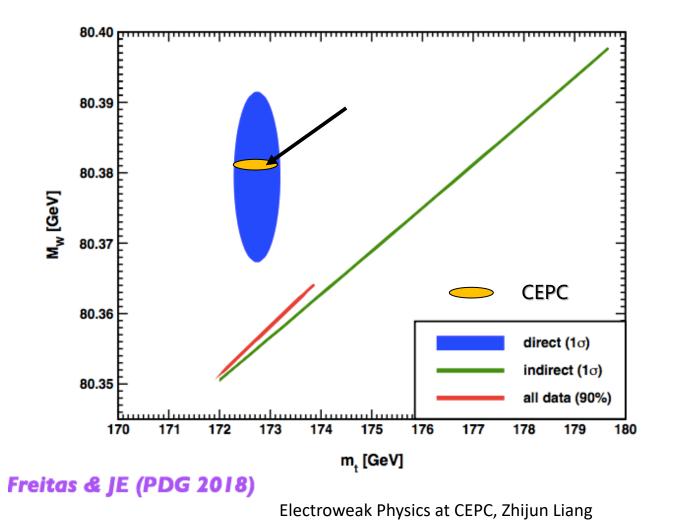
Direct measurement performed in ZH runs (240GeV) Precision 2~3MeV WW threshold scan WW threshold runs (157~172GeV) Expected Precision 1MeV level



Electroweak Physics at CEPC, Zhijun Liang

WW threshold scan-systematics unc.

- Expected 1MeV precision in W mass measurement
 - Dominated by statistics uncertainty.
 - Would benefitted if extend WW runs by three more years
 - Leading syst. (0.4MeV): beam energy syst.



Idea from Paolo Azzuri et al. arxiv: 1703.01626v1

Prospect of CEPC W mass measurement

- CEPC can improve current precision of W mass by one order of magnitude
 - Good physics potential for BSM physics from indirect search

Joint CEPC-FCC W mass paper

Joint CEPC-Fcc W mass paper submitted to EPJC

- Weekly meeting with Fcc side to converge on this paper
- Paolo Azzurri collected comments from FCC side
- Gang and I have preliminary review
- Joao did final review for paper draft before submitting to Arxiv
- To Do
 - Clarify experimental systematics estimation to EPJC referee

arXiv.org > hep-ex > arXiv:1812.09855

High Energy Physics - Experiment

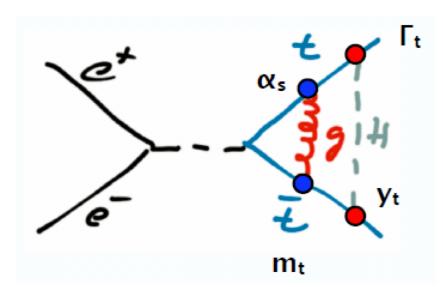
Data-taking strategy for the precise measurement of the W boson mass with threshold scan at circular electron positron colliders

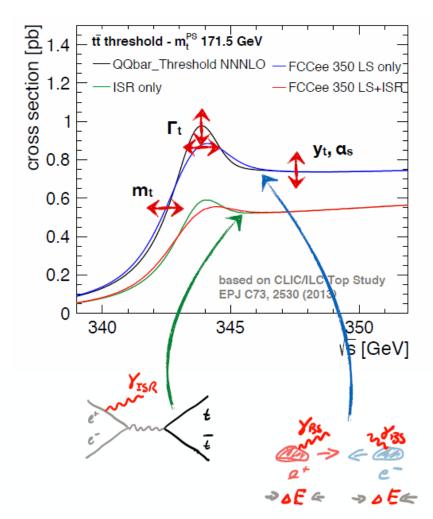
P. X. Shen, P. Azzurri, M. Boonekamp, P. Z. Lai, B. Li, G. Li, H. N. Li, Z. J. Liang, B. Liu, J. M. Qian, L. S. Shi, C. X. Yu

Outline

- Introduction to CEPC
- Z pole physics
- W physics
- Top physics

Top threshold scan

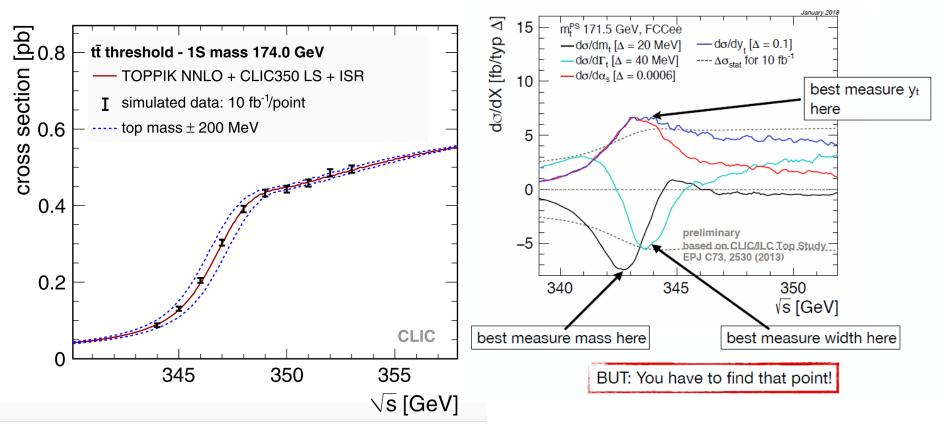

• Review of the key electroweak constant


Fundamental constant	δx/x	measurements	
$\alpha = 1/137.035999139$ (31)	1×10 ⁻¹⁰	$e^{\pm}g_2$	
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10-6	$\mu^{\pm}lifetime$	
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10-5	LEP	
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC	
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD	
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10-3	Tevatron/LHC	Top sc
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC	Runs

From PDG2018

top threshold scan

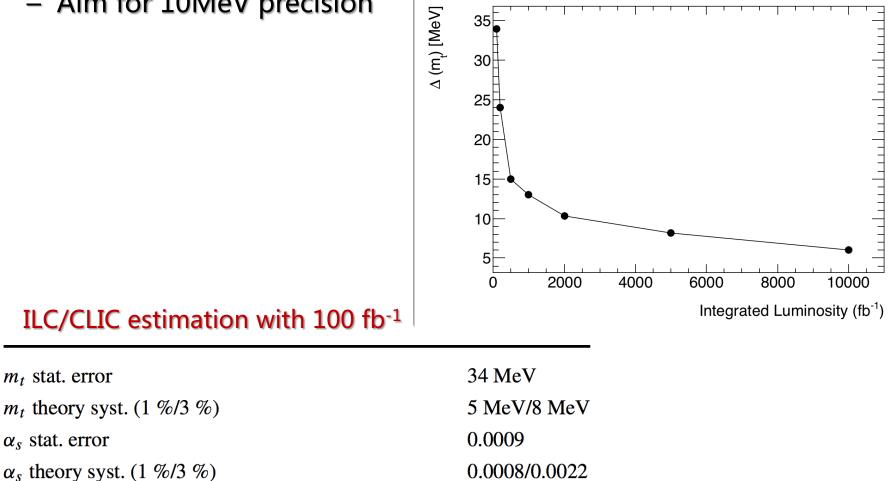
- Top threshold cross-section depends on:
 - top mass
 - top width (lifetime)
 - top-Higgs coupling
 - αQCD



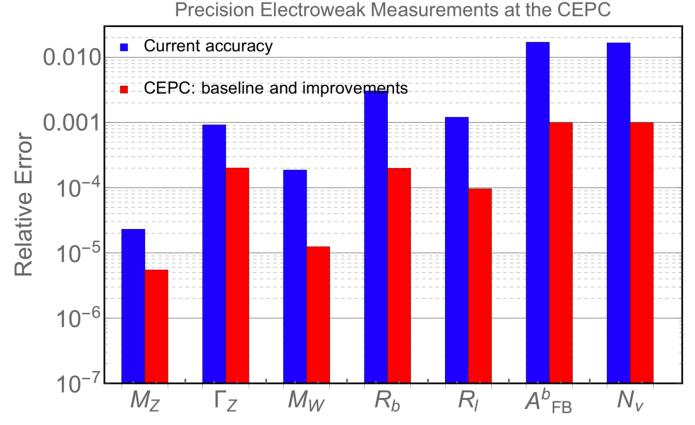
Thanks to discussion and slides from Alain Blondel Study by Frank Simon (CLIC/ILC study, EPJC 73,(2013)2530)

Top threshold scan

• Strategy:


- Need a rough scan to measure the top mass to 100 MeV. (5-10 fb⁻¹)
- Fix the final scan points
- since there are four parameters to fix, need at least 4 scan points
 - Scanning range 340GeV ~355GeV

Electroweak Physics at CEPC, Zhijun Liang


Top threshold scan

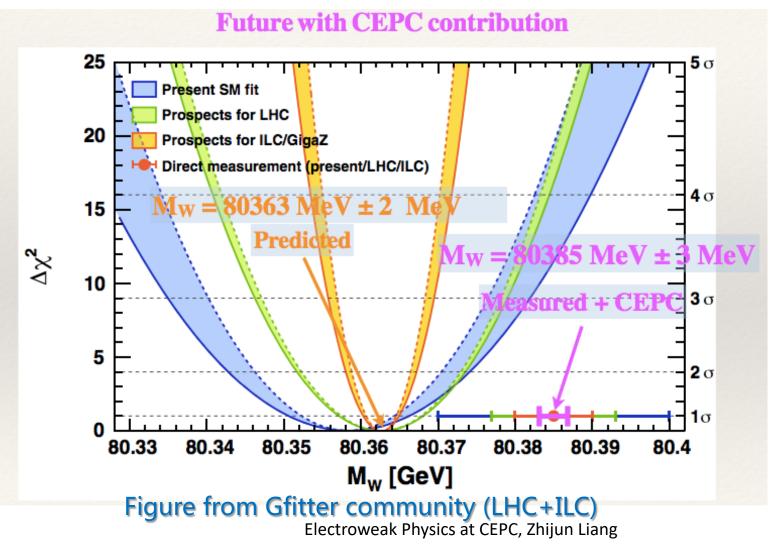
- If CEPC decided to have top threshold scan
 - Better to have integrated Lumosity larger than 2ab⁻¹
 - Aim for 10MeV precision

Summary

- Potential of electroweak measurement at CEPC
 - W mass precision (1MeV) is expected to be limited by statistics
 - Possible target for top mass precision (10MeV) for CEPC
 - With 2ab⁻¹ integrated Luminosity scanning 345GeV ~353GeV

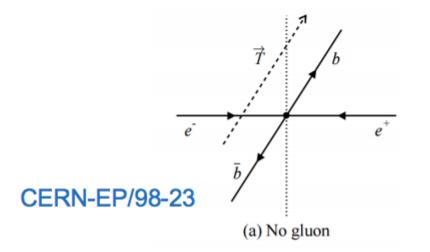
Backup

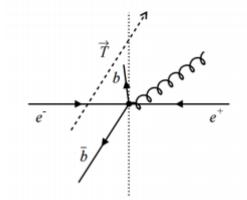
Beam polarization


- What is Polarized beam collision ?
 - Usually mean longitudinal polarized beam for physics

Туре	Polarized beam collision	Beam energy measurement
Polarized Type	Longitudinal polarized	Transverse polarized
Fraction of polarization	>30% (50%)	5~10% is enough

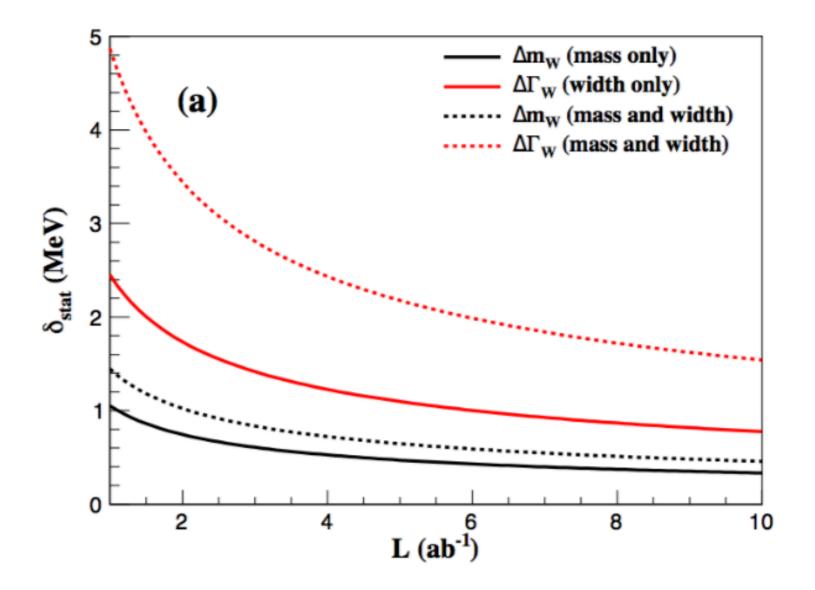
Туре	Longitudinal polarized e-	Longitudinal polarized e+	Transverse polarized Beam
CEPC	To be discussed	To be discussed	Yes (Z,WW)
Fcc-ee	No	NO	Yes (Z,WW)
ILC	yes	yes	-


Prospect of CEPC W mass measurement


- CEPC can improve current precision of W mass by one order of magnitude
 - A possible BSM physics can be discovered in the future

Backward-forward asymmetry

- Uncertainty Afb_b due to QCD correction to Thrust
 - Higher order QCD effect is major systematics



(d) Thrust forward, quark backward

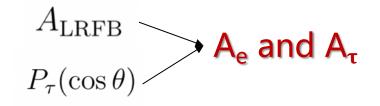
Error source	$C_{ m QCD}^{ m quark}$ (%)		$C_{ m QCD}^{ m part,T}$ (%)	
	$b\bar{b}$	$c\bar{c}$	$b\bar{b}$	$c\bar{c}$
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08
$\alpha_s(m_Z^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16
Higher order corrections	0.27	0.66	0.27	0.66
Total error	0.37	0.69	0.33	0.68

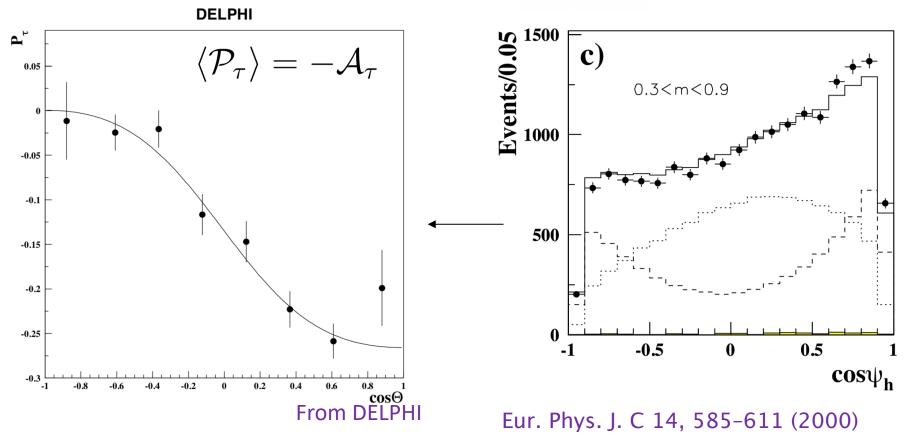
 $A_{FB}^{bb}(0)$

Statistics error on W mass Vs Luminosity

WW threshold scan – CEPC plan

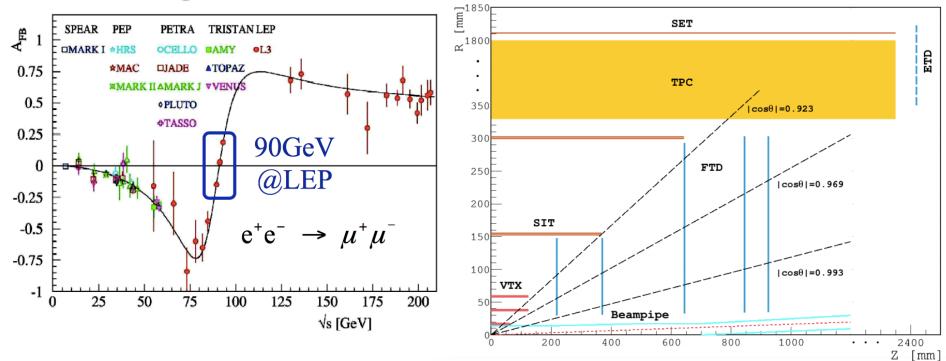
- WW threshold scan running proposal
 - Assuming one year data taking in WW threshold (2.6 ab⁻¹)
 - Four energy scan points:
 - 157.5, 161.5, 162.5(W mass, W width measurements)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br (W->had), CKM |Vcs|) ٠
 - 14M WW events in total


400 times larger than LEP2 comparing WW runs


E _{cm} (GeV)	Lumiosity (ab ⁻¹)	Cross section (pb)	Number of WW pairs (M)	(qd)	LEP
157.5	0.5	1.25	0.6	δ 20-	
161.5	0.2	3.89	0.8		
162.5	1.3	5.02	6.5	10 -	YFSWW/RacoonWW no ZWW vertex (Gentle)
172.0	0.5	12.2	6.1	0 -	only v _e exchange (Gentle)
		Electroweak Ph	vsics at CEPC. Zhiiun Liang		160 180 200 √s (GeV)₂7

$A_e \text{ and } A_\tau \text{ in } Z \rightarrow \tau \tau$

Tau polarization can be measured through its decay product


$$P_{\tau}(\cos\theta) = -\frac{\mathcal{A}_{\tau}(1+\cos^2\theta) + \mathcal{A}_e(2\cos\theta)}{(1+\cos^2\theta) + \frac{4}{3}\mathcal{A}_{fb}(2\cos\theta)}$$

Backward-forward asymmetry in Z->µµ

- LEP measurement : 0.0169 +-0.00130
- CEPC expected: +-0.00005
 - CEPC has potential to improve it by a factor of 20~30.
 - Acceptance systematics (larger detector coverage, smaller syst.)
- Major systematics (absolute value.)
 - Beam energy systematics (5e⁻⁵, assuming 500keV E_{beam} unc.)
 - Muon angular resolution (1e⁻⁵ level)

Top threshold scan

Study by Frank Simon (CLIC/ILC study, EPJC 73, (2013)2530)