

CEPC Higgs @ 240 and 360GeV

K. Zhang, Z. Liu, Y. Fang, G. Li

CEPC Day 2019.09.27

Higgs Physics @ CEPC

CEPC CDR: arxiv:1811.10545 White Paper: arxiv:1810.09037 **Combination Report in Oxford**;

CEPC Day@2019.09.27

CEPC CDR

400 √s [GeV]

Cross section

196.2

6.19

0.28

203.7

Events in 5.6 ab-

 1.10×10^{6}

 3.47×10^4

 1.57×10^{3}

 1.14×10^{6}

350

Existing results:240GeV, 5.6iab

(240GeV,5.6ab ⁻¹)	CDR	2019.09
$\sigma(ZH)$	0.50%	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%	
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	5.4%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	12%
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%	
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.2%
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	
Width	2.8%	

Several channels improved after CDR.

Mostly from better analysis strategy.

Publications:

•

- $\sigma(ZH)$:1601.05352;
- bb/cc/gg: 1905.12903;
- au au:1903.12327.....

Combination

- All Higgs observables as input
 - Shape information
 - Mass spectrum, BDT response, Flavor tagging likeliness
 - Multi-dimensional fit performed if no significant correlation
 - Fixed PDF, Asimov Data, μ float
- Simultaneous fit to all sub-channels
 - Correlation taken into account
 - Such as Higgs yields cross talks, anti-correlation, ...
- Precision of Higgs width ~ 2.8%
 - Dominated by $\sigma(vvH) * Br(H \rightarrow bb)$ and $Br(H \rightarrow ZZ)$

Esp. for vvH & ZH, H->bb

Constrained 7-k fremework

Updated based on <u>latest</u> HL-LHC projections.

- CEPC ~1 order of magnitude improvement w.r.t pp collider.
- While HL-HLC has advantages on γ /lepton statistics.

 κ_{γ}/κ_z constraints could improve the other couplings in a model-dependent way.

Independent κ fit

The Higgs width is free. Only lepton colliders could apply. The best constraint of the CEPC is κ_Z , $0.5\% \sigma(ZH) \rightarrow 0.25\%\kappa_Z$ Higgs width brings a floor effect around 1.4%.

Correlation Matrix

Upper entries: CEPC alone; Lower entries: combining with HL-LHC (get reduced);

7

Direction of

Higgs precisions @ 360 GeV

CEPC Day@2019.09.27

Higher Energy Run

- 350~365GeV Run: worthwhile
 - Over top threshold, EW/EFT/Theoretical part benefits;
 - Larger vvH cross section could benefits to Higgs width
 - FCC-ee/ILC/CLIC already have similar plan
 - Why 360? It saves 10% energy w.r.t 365 GeV
- Temporary benchmark: 2 ab⁻¹ @ 360GeV
 - Not determined yet \rightarrow depends on study of top scan

FCC-ee: 0.2 ab⁻¹ 350 GeV + 1.5 ab⁻¹ 365 GeV

Signal Cross Sections

- 240GeV:
 - vvH: 6.2fb, interference: ~10% of vvH;
- 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Total	203.6		159.0		
Total Events	1.14M		0.32M		

In total ~1.5M Higgs would be collected in CEPC 240+360. More fusion events, sizable eeH at 360GeV.

ZH/vvH interference included

Major background cross sections

365/240	365	360	350	240	pb
-66%	319	325	336	930	ee(γ)
-60%	2.1	2.1	2.2	5.3	μμ(γ)
-58%	22.8	23.2	24.7	54.1	qq(γ)
-41%	9.81	10.0	10.4	16.7	WW
-44%	0.62	0.63	0.66	1.1	ZZ
	0.369	0.317	0.155	١	tt
+28%	5.83	5.78	5.72	4.54	sZ
+19%	6.04	6.00	5.89	5.09	sW

While 2fermion and WW, ZZ bkgs reduced, W/Z fusion and $t\bar{t}$ raise.

Generally, SM bkgs in 360 GeV are smaller than 240GeV.

Fast simulation samples to check the eff./shape/resolution. Then scale the existing 240 GeV results to 360GeV according to the eff./shape/xsections changes.

vvH->bb, full simulation

- 2D: Recoil qq + Cos θ_{qq} Fit
- Clear separation between ZH and vvH.
- Constraints from other ZH->bb(*ee*, μμ, qq) considered
 - $\sigma(vvH) * Br(H \rightarrow bb):0.76\%$
 - $\sigma(ZH) * Br(H \rightarrow bb): 0.63\%$
 - Correlation -16%. (-45%@240 GeV)
- One conservative bkg estimation gives 0.79%
 - (more irreducible $t\bar{t}$)
 - Significant improvement corresponding to 240GeV(2.8%)

Extrapolations

- Mainly scale yields from 240GeV case.
- $\sigma(ZH)$: preliminarily around 1%
 - Need efforts to update qqH channel
- Resolution change: 2 benchmarks
 - dimuon: worse: ~0.3GeV →1GeV; (23% -> 29%)
 - diphoton: better: $\sim 2.5 \text{GeV} \rightarrow 2 \text{GeV}$; (9% -> 8%)
- $H \rightarrow invisible(ZZ \rightarrow vvvv)$ Upper limit
 - Sensitive to background shape, needs study in details

Ideal inclusive $Z \rightarrow \mu\mu: 0.92\% \rightarrow 1.72\%$

Higgs width

• Absolute width measurement by 2 dominant channels:

$$\Gamma_H = \frac{\Gamma_{H \to ZZ}}{Br(H \to ZZ)} \propto \frac{\sigma(ZH)}{Br(H \to ZZ)}$$
 and $\Gamma_H = \frac{\Gamma_{H \to bb}}{Br(H \to bb)} \propto \frac{\sigma(\nu\nu H \to \nu\nu bb)}{Br(H \to WW)}$

- ZZ provide ~10% precision.
- At 360 GeV, $\sigma(vvH) * Br(H \rightarrow bb): 0.76\% \sigma(ZH) * Br(H \rightarrow bb): 0.63\%$ correlation -16%.
 - $Br(H \to WW) \simeq 2\% @ 360 \text{GeV} + 1\% @ 240 \text{ GeV}$.
 - Combined fit in 10 κ framework:

 $\Delta(\Gamma_H) \approx 1.6\%$

Summary

Fcc:	
------	--

	240GeV, 5.6ab ⁻¹	360GeV, 2ab ⁻¹	
	ZH	ZH VVH	
any	0.50%	1%	١
$H \rightarrow bb$	0.27% 0.63%		0.76%
$H \rightarrow cc$	3.3%	6.2%	11%
$\mathrm{H} ightarrow \mathrm{gg}$	1.3%	2.4%	3.2%
$H \rightarrow WW$	1.0%	2.0%	3.1%
$H \rightarrow ZZ$	5.1%	12%	13%
$H \rightarrow \tau \tau$	0.8%	1.5% 3%	
$H \rightarrow \gamma \gamma$	5.4%	8% 11%	
$H \rightarrow \mu \mu$	12%	29%	40%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	١
Width	2.8%	1.6%	

Generally, even though the extrapolation not so accurate, results	comparable
with FCC-ee	

For Higgs coupling, also similar performance could be expected.

\sqrt{s} (GeV)	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}\;H$
$\mathrm{H} \to \mathrm{any}$	± 0.5		± 0.9	
$\mathrm{H} \to \mathrm{b}\bar{\mathrm{b}}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$\rm H \rightarrow \rm W^+ \rm W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H\to\gamma\gamma$	± 9.0		± 18	± 22
${\rm H} \rightarrow \mu^+ \mu^-$	± 19		± 40	
${\rm H} \rightarrow {\rm invisible}$	< 0.3		< 0.6	

For $H \rightarrow \gamma \gamma$ and $H \rightarrow \mu \mu$, resolution changes considered. Keep di-photon resolution ~(2.5GeV) : 9% 2.5GeV to 2GeV: 8%

Keep di-muon resolution ~(0.3GeV): 23% 0.3 GeV to 1 GeV: 29%

Summary

- Latest CEPC Higgs combination, $\sigma * Br$ and coupling results are shown.
 - Correlation considered.
- Extrapolation to 360 GeV
 - Temporary benchmark showed ~1.6% precision for width.
 - Comparable with FCC-ee.
- Many done, but more need to be carried out