

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

环形正负电子对撞机 Circular Electron Positron Collider

CEPC linac injector beam dynamics with S band and C band structures to 20 GeV

CEPC Working Day Meeting 27 September, 2019

Cai Meng

On behalf of CEPC AP/LN group

Outline

➢Introduction

➢Alternative design of CEPC Linac

- 20 GeV scheme with C-band
- Lattice design
- Error study
- Cost analysis

➤Summary

➤CEPC baseline Linac

- 10 GeV S-band (2860MHz) normal conducting Linac
- High availability is the key design principle
- Conventional positron source
 - \checkmark Fixed target
- 1.1 GeV damping ring

Parameter	Symbol	Unit	Value	potential
e⁻ /e⁺ beam energy	E_{e-}/E_{e+}	GeV	10	>10
Repetition rate	f_{rep}	Hz	100	-
ot lot hunch nonulation	Ne-/Ne+		>9.4×10 ⁹	>1.9×10 ¹⁰
e /e bunch population		nC	>1.5	>3
Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³	-
Emittance (e ⁻ /e ⁺)	\mathcal{E}_r	nm	<120	<40
e ⁻ beam energy on Target		GeV	4	-
e ⁻ bunch charge on Target		nC	10	-

$L_{\text{int}} = \int_0^T L(t) dt = \langle L \rangle \cdot T_s \cdot \eta$

IAC report

- ➤ The IAC notes the plasma wakefield acceleration alternative to the conventional scheme for injection. It also recommends that the team examine a C-band solution, as mentioned in the CDR review recommendations.
- Advantage (High energy)
 - Reduce the technical risk of low magnetic field magnets of the Booster
 - Reduce the difficulty of the Booster design
- ➤CEPC alternative Linac (20GeV)
 - S-band + C-band : 10GeV→20GeV
- >PWFA
 - 45GeV injector + Booster

Smaller emittance requirement for LINAC, even baseline design

Parameter	Symbol	Unit	Baseline	Alternative
e⁻ /e⁺ beam energy	$E_{e^{-}}/E_{e^{+}}$	GeV	10	20
Repetition rate	f_{rep}	Hz	100	100
Bunches/pulse			1	1
o- (ot burgh population	Ne-/Ne+		>9.4×10 ⁹	>9.4×10 ⁹
e /e ⁻ bunch population		nC	>1.5 (3)	>1.5 (3)
Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		<2×10 ⁻³	<2×10 ⁻³
Emittance (e ⁻ /e ⁺) Req.	\mathcal{E}_r	nm	<120 →40	<60 →20

➤Energy raise

- Energy at Linac exit > 20GeV
- High gradient accelerating structure to control Linac length
- Keep the bunch potential \rightarrow Wakefield, accelerating structure aperture
- C-band

Parameter	Unit	S-band	C-band
Frequency	MHz	2860	5720
Length	m	3.1	1.8
Cavity mode		2π/3	3π/4
Aperture diameter (mm)	mm	20~24	11.8~16
Gradient	MV/m	21	45

CEPC Working Day Meeting, IHEP, Beijing, China, September 27,2019

Alternative Linac Layout

CEP

Alternative Linac design

• Linac exit energy: $10 \text{GeV} \rightarrow 20 \text{GeV}$

- C-band: start energy~ 4GeV
- Transverse focusing
 - ✓ Triplet

S-band: 4 GeV \rightarrow 10GeV C-band: 4 GeV \rightarrow 20GeV

Alternative Linac Layout

CEP

Alternative Linac design

• Linac exit energy: $10 \text{GeV} \rightarrow 20 \text{GeV}$

S-band Accelerating structure

- C-band: start energy~ 4GeV
- Transverse focusing
 - ✓ Triplet

C-band Accelerating structure

S-band: 4 GeV \rightarrow 10GeV C-band: 4 GeV \rightarrow 20GeV

Alternative Linac Optics function

➤Lattice design (optics)

- 1.1GeV (damping ring) →20GeV
- Shorter bunch length (High frequency)

CEPC Working Day Meeting, IHEP, Beijing, China, September 27,2019

Alternative Linac

Beam dynamics

Energy spread

- 0.2%
- Rms Bunch length<0.5mm
 - ✓ Difficulty design of BCS after Damping Ring
 - ✓ Difficulty design for booster RF @ injection
- ➢Emittance
 - 15nm
 - More damping time in DR

Alternative design

Error study

\succ Orbit distortion (75 seeds)

- Without correction, beam lost at most case
- With correction
 - \checkmark Cx<0.6mm, emittance growth~2%
 - \checkmark Cy is growth greatly, which is need more analysis, emittance growth~20%
 - \checkmark Emittance smaller than the required value

Element	Error	Value (rms)
Quadrupol	Misalignment(x/y/z)	0.1/0.1/0.2
е	Field error	0.1%
Acceleratin g structure	Misalignment(x/y)	0.1/0.1mm
BPM	Uncertainty	0.1mm

Alternative design

Dynamic errors

Accelerating structure

- Phase errors and amplitude errors
 - ✓ 1 klystron → 4 S-band accelerating structure
 - ✓ 1 klystron → 2 C-band accelerating structure
- 0.5 degree && 0.5% (More

(More accelerating structure)

Alternative design Physics design

➢ Requirements

- Bunch length compression section (BSC) after DR, RMS bunch length should be shorter than 0.5 mm
- Higher magnetic field for LTB (Linac to Booster) magnets

Parameter	Symbol	Unit	Alternative design	Status
e⁻ /e⁺ beam energy	E_{e}/E_{e+}	GeV	20	20
Repetition rate	f_{rep}	Hz	100	100
Bunches/pulse			1	1
e ⁻ /e ⁺ bunch population	Ne-/Ne+	nC	>1.5 (3)	3
Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		2×10^{-3}	$\sim 2 \times 10^{-3}$
Emittance (e ⁻ /e ⁺) Req.	\mathcal{E}_r	nm	20	15/6
Linac length		m		1400

CEPC Working Day Meeting, IHEP, Beijing, China, September 27,2019

Alternative design

elements

> Devices

- Magnet system
- Power source system
- Microwave system
- Beam diagnostic system
- Power supply system

Туре	Baseline	Alternative	Value
S-band KLY	73	44	80 MW
C-band KLY		114	50 MW
Solid state power source	2	2	10kW
S-band Acc. Structure	277	161	21 MV/m
C-band Acc. Structure		228	45MV/m
S-band LAS Acc. Structure	6	6	22 MV/m@Ø25mm
SHB	2	2	143/572MHz
Buncher	1	1	2860 MHz
BPM	86	108	0.1 mm
流强测量	42	50	
发射度测量	4	5	
能量分析站	3	4	
束团截面测量 (PR)	60	70	

CEPC Working Day Meeting, IHEP, Beijing, China, September 27,2019

Туре		Baseline	Alternative	参数要求	备注
二极磁	В	4	4	Dipole, Gap 34mm, Field 1T, Length 2.356m.	
	CB1	4	4	Dipole, Gap 54mm, Field 0.5T, Length 0.279m.	
	AM1	2	2	Dipole, Gap 34mm, Field 0.3T, Length 0.262m.	
铁	AM2	1	1	Dipole, Gap 34mm, Field 0.8T, Length 5.236m.	
	AM3	1	2	Dipole, Gap 34mm, Field 1T, Length 5.847m.	
	150Q	48	48	Quadrupole, R 150mm, Field 10T/m, Length 0.3m.	
	60SQ	6	6	Quadrupole, R 60mm, Field 15T/m, Length 0.1m.	两个磁铁一个电源
	60LQ	3	3	Quadrupole, R 60mm, Field 15T/m, Length 0.2m.	
	40SQ	88	88	Quadrupole, R 40mm, Field 28T/m, Length 0.2m.	两个磁铁一个电源
	40LQ	50	50	Quadrupole, R 40mm, Field 28T/m, Length 0.4m.	
四极磁	32SQ	38	8	Quadrupole, R 32mm, Field 36T/m, Length 0.3m.	两个磁铁一个电源
铁	32LQ	19	4	Quadrupole, R 32mm, Field 36T/m, Length 0.6m.	
	24SQ		32	Quadrupole, R 24mm, Field 48T/m, Length 0.3m.	两个磁铁一个电源
	24LQ		16	Quadrupole, R 24mm, Field 48T/m, Length 0.6m.	
	20SQ		42	Quadrupole, R 20mm, Field 60T/m, Length 0.3m.	两个磁铁一个电源
	20LQ		21	Quadrupole, R 20mm, Field 60T/m, Length 0.6m.	

Туре		Baseline	Alternative	备注
	S 1	4	4	Solenoid, Aperture 90 mm, Field 0.06T, Max.Length 80mm
櫻化答	S2	6	6	Solenoid, Aperture 200 mm, Field 0.1T, Max.Length 120mm
<u> </u>	S3	20	20	Solenoid, Aperture 200 mm, Field 0.05T, Max.Length 70 mm
	S4	15	15	Solenoid, Aperture 400 mm, Field 0.5T, Max.Length 1m
	150C	17	17	Corrector x and y, Gap 150mm, Field 0.015T, Length 0.25m.
	L60C	3	3	Corrector x and y, Gap 60mm, Field 0.015T, Length 0.1m.
校正磁	L40C	46	46	Corrector x and y, Gap 40mm, Field 0.08T, Length 0.1m.
铁	L32C	19	4	Corrector x and y, Gap 32mm, Field 0.085T, Length 0.2m.
	L24C		16	Corrector x and y, Gap 24mm, Field 0.085T, Length 0.2m.
	L20C		21	Corrector x and y, Gap 20mm, Field 0.12T, Length 0.2m.
Cai M	eng			CEPC injector linac

CEPC injector linac

The cost not included

- Source & Damping ring & transport lines @ LINAC
- All LTB hardware device

≻The cost increase 0.34 Billion CNY (38%), the energy grows up from 10 GeV to 20GeV

No	Suctors	Price (Ten thousand)				
NU.	System	S-band (10 GeV)	S&C-band (20 GeV)	Gap		
1	RF system (Ch 6.5.1)	33338	45622	12284		
2	RF power source (Ch 6.5.2)	32190	46740	14550		
3	Magnets (Ch 6.5.3)	2183	3323	1140		
4	Magnet power supplies (Ch 6.5.4)	2050	2328	278		
5	Vacuum system (Ch.6.5.5)	6060	10221	1847		
6	Instrumentation (Ch 6.5.6)	6400	7335	935		
7	Control system (Ch 6.5.7)	5793	6112	319		
8	Mechanical systems (Ch 6.5.8)	1070	1327	257		
	Total	89084	123008	33924		

CEPC Working Day Meeting, IHEP, Beijing, China, September 27,2019

@J. R. Zhang

- The alternative design with C-band accelerating structure and energy up to 20 GeV have been proposed and designed.
- The preliminary error study have been finished, more optimization is ongoing.
- >The dynamic simulation results can meet the requirements.
- ➤The cost without source/Damping ring/ transport lines(LTD,DTL,LTB) will increase 0.34 billion with the beam energy increase from 10 GeV to 20GeV.