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Key Ideas for this Talk 

•  The “electroweak temperature” ! a 
scale provided by nature that gives us 
a clear BSM target for colliders 

•  Simple argument ! BSM physics that 
changes the thermal history of EWSB 
cannot be too heavy or too feeble  

•  Concrete BSM models !  exemplify 
these arguments 
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Precision ! 



The Origin of Matter 

What can the LHC & future colliders teach us 
about open questions in cosmology ? 

Cosmic Energy Budget 
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No favored DM energy scale 
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Main Theme for This Talk 

TEW  ! EW phase transition is a 
target for the LHC & beyond 
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Outline 

I.  Context & Questions 

II.  EWPT: A Collider Target 

III.  Models & Phenomenology 

IV.  Outlook 



13 

I. Context & Questions 



Electroweak Phase Transition 

•  Higgs discovery ! What was the thermal 
history of EWSB ? 

•  Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ? 

•  Gravitational waves ! If a signal observed in 
LISA, could a cosmological phase transition 
be responsible ? 
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Thermal History of Symmetry Breaking 

QCD Phase Diagram ! EW Theory Analog?  
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S. Weinberg, PRD 9 (1974) 3357 
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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Extrema can evolve differently as T evolves ! 
rich possibilities for symmetry breaking 
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•  Baryogen* 

•  GW  

* Need BSM CPV 
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II. EWPT: A Collider Target 

MJRM 19010.NNNNN 

•  Mass scale 
•  Precision 
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
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T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)

Generate finite-T barrier 
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
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T
12⇡
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{b}0
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⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
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. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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III. MODELS

We consider the renormalizable Higgs portal interactions involving H and � for two illustrative cases. We restrict
our attention to � being a complex scalar with Y = 0. The form of the potential for � being a real representation of
SU(2)L with Y = 0 is relatively simple. The corresponding features have been illustrated in previous studies wherein
� is either an SU(2)L singlet or real triplet. Consequently, we focus on complex representations, using the n = 5 and
n = 7 examples, to illustrate the new features not considered in earlier work.

To proceed, we first introduce some notation. It is convenient to consider both � and the associated conjugate �,
whose components are related to those of � as

�j,m = (�1)j�m�⇤
j,�m , (15)

where j refers to the isospin of the scalar multiplet �. As we discuss in Appendix A, � and � transform in the same
way under SU(2)L. The scalar multiplet � of integer isospin can be either real or complex. If � is a real multiplet,
there is a redundancy � = � such that the constraint �j,m = (�1)j�m

�
⇤
j,�m should be fulfilled. For complex multiplet,

each component represents a unique field, and it can be decomposed into two real multiplets as follows

A =
1
p
2

�
�+ �

�
, B =

i
p
2

�
�� �

�
. (16)

It is easy to verify that both A and B fulfill the realness condition A = A and B = B. Therefore a general model
with a complex multiplet � is equivalent to a model of two interacting real multiplets A and B. Notice that a scalar
multiplet � of half integer isospin is always complex since the realness condition � = � can not be fulfilled anymore.
As we note below, under certain assumptions about the model parameters, the complex scalar multiplets may reduce
to a pair of degenerate real multiplets, allowing for a two-component DM scenario. Since the case of the real triplet
and singlet DM as singlet component DM have been analyzed elsewhere, we do not consider higher dimensional real
representations here. Instead, we focus on the complex Y = 0 examples that, in principle, can embody two-component
real multiplet DM scenarios.
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0
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⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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III. MODELS

We consider the renormalizable Higgs portal interactions involving H and � for two illustrative cases. We restrict
our attention to � being a complex scalar with Y = 0. The form of the potential for � being a real representation of
SU(2)L with Y = 0 is relatively simple. The corresponding features have been illustrated in previous studies wherein
� is either an SU(2)L singlet or real triplet. Consequently, we focus on complex representations, using the n = 5 and
n = 7 examples, to illustrate the new features not considered in earlier work.

To proceed, we first introduce some notation. It is convenient to consider both � and the associated conjugate �,
whose components are related to those of � as

�j,m = (�1)j�m�⇤
j,�m , (15)

where j refers to the isospin of the scalar multiplet �. As we discuss in Appendix A, � and � transform in the same
way under SU(2)L. The scalar multiplet � of integer isospin can be either real or complex. If � is a real multiplet,
there is a redundancy � = � such that the constraint �j,m = (�1)j�m
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It is easy to verify that both A and B fulfill the realness condition A = A and B = B. Therefore a general model
with a complex multiplet � is equivalent to a model of two interacting real multiplets A and B. Notice that a scalar
multiplet � of half integer isospin is always complex since the realness condition � = � can not be fulfilled anymore.
As we note below, under certain assumptions about the model parameters, the complex scalar multiplets may reduce
to a pair of degenerate real multiplets, allowing for a two-component DM scenario. Since the case of the real triplet
and singlet DM as singlet component DM have been analyzed elsewhere, we do not consider higher dimensional real
representations here. Instead, we focus on the complex Y = 0 examples that, in principle, can embody two-component
real multiplet DM scenarios.
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes
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When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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We consider the renormalizable Higgs portal interactions involving H and � for two illustrative cases. We restrict
our attention to � being a complex scalar with Y = 0. The form of the potential for � being a real representation of
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.

I. INTRODUCTION

II. FORMULAE

V (h, T )SM = D(T 2
� T

2
0 )h

2 + �h
4 (1)

T
2
0 = (8�+ loops)

✓
3

2
g
2 + g

0 2 + 2y2t + · · ·

◆�1

v
2 (2)

T0 ⇡ 140 GeV (3)

V (H,�)T=0=V (H) +
a2

2
�
†
�H

†
H + V (�) (4)

V (H)=�µ
2
H

†
H + �(H†

H)2 (5)

V (�)=
b2

2
�
†
�+

b4

4!
(�†

�)2 (6)

�V (h, T ) � �
T

12⇡
M�(h, T )

3 (7)

⇤Electronic address: mjrm@physics.umass.edu

Choose b2 , a2 to cancel at T ~ TEW 

2

M�(h, T )
3 =

h
a2

12
T

2 + b2 +
a2

4
h
2
i3/2

(8)

b2 ⇡ �
a2

12
T

2
EW (9)

�V (h, TEW) � �
TEW

12⇡

a
3/2
2

8
h
3 (10)

M�(T = 0) =
a2

4

�
v
2
� T

2
EW/3

�
(11)

V (', T ) =
1

2


�|b2|+

T
2

6

✓
a2 +

3

2
b4

◆�
'
2 +

b4

4!
'
4 (12)

|b2| >
T

2
EW

6

✓
a2 +

3

2
b4

◆
(13)

M�(T = 0) <


a2

4
v
2
�

T
2
EW

6

✓
a2 +

3

2
b4

◆�1/2
(14)

III. MODELS

We consider the renormalizable Higgs portal interactions involving H and � for two illustrative cases. We restrict
our attention to � being a complex scalar with Y = 0. The form of the potential for � being a real representation of
SU(2)L with Y = 0 is relatively simple. The corresponding features have been illustrated in previous studies wherein
� is either an SU(2)L singlet or real triplet. Consequently, we focus on complex representations, using the n = 5 and
n = 7 examples, to illustrate the new features not considered in earlier work.
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with a complex multiplet � is equivalent to a model of two interacting real multiplets A and B. Notice that a scalar
multiplet � of half integer isospin is always complex since the realness condition � = � can not be fulfilled anymore.
As we note below, under certain assumptions about the model parameters, the complex scalar multiplets may reduce
to a pair of degenerate real multiplets, allowing for a two-component DM scenario. Since the case of the real triplet
and singlet DM as singlet component DM have been analyzed elsewhere, we do not consider higher dimensional real
representations here. Instead, we focus on the complex Y = 0 examples that, in principle, can embody two-component
real multiplet DM scenarios.
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Negative for T1 > T2 ~ TEW 
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•  Tree-level barrier: a2 φ+φ H+H 

•  Want T1 > T2 ~ TEW 
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III. MODELS

We consider the renormalizable Higgs portal interactions involving H and � for two illustrative cases. We restrict
our attention to � being a complex scalar with Y = 0. The form of the potential for � being a real representation of
SU(2)L with Y = 0 is relatively simple. The corresponding features have been illustrated in previous studies wherein
� is either an SU(2)L singlet or real triplet. Consequently, we focus on complex representations, using the n = 5 and
n = 7 examples, to illustrate the new features not considered in earlier work.

To proceed, we first introduce some notation. It is convenient to consider both � and the associated conjugate �,
whose components are related to those of � as

�j,m = (�1)j�m�⇤
j,�m , (15)

where j refers to the isospin of the scalar multiplet �. As we discuss in Appendix A, � and � transform in the same
way under SU(2)L. The scalar multiplet � of integer isospin can be either real or complex. If � is a real multiplet,
there is a redundancy � = � such that the constraint �j,m = (�1)j�m

�
⇤
j,�m should be fulfilled. For complex multiplet,

each component represents a unique field, and it can be decomposed into two real multiplets as follows

A =
1
p
2

�
�+ �

�
, B =

i
p
2

�
�� �

�
. (16)

It is easy to verify that both A and B fulfill the realness condition A = A and B = B. Therefore a general model
with a complex multiplet � is equivalent to a model of two interacting real multiplets A and B. Notice that a scalar
multiplet � of half integer isospin is always complex since the realness condition � = � can not be fulfilled anymore.
As we note below, under certain assumptions about the model parameters, the complex scalar multiplets may reduce
to a pair of degenerate real multiplets, allowing for a two-component DM scenario. Since the case of the real triplet
and singlet DM as singlet component DM have been analyzed elsewhere, we do not consider higher dimensional real
representations here. Instead, we focus on the complex Y = 0 examples that, in principle, can embody two-component
real multiplet DM scenarios.

Mφ  < 350 GeV  for 
perturbative a2 , b4 



TEW : A Mass Scale for Colliders 

•  Foregoing arguments: good up to factor of 
~ 2 ! Mφ < 800 GeV (-ish) 

•  QCD production: LHC exclusion ! φ is 
colorless  

•  Electroweak or Higgs portal (h-φ mixing…) 
production ! σPROD  ~ (1- 500) fb (LHC) and 
(0.1-25) pb (100 TeV pp)  

•  Precision Higgs studies: see ahead 
44 



Higgs Boson Properties 
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First Order EWPT from BSM Physics 

•  Γ (h ! γγ ) 

•  Higgs signal strengths  

•  Higgs self-coupling 
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H2φ2   Barrier ? 
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H2φ2   Barrier ? 
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h j
 γ

 γ 

Σ+

 φ :   EW Multiplet 



H ! γγ : Is There a Barrier ? 
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H ! γγ : Is There a Barrier ? 
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€ 

h j
 γ

 γ 

Σ+

New scalars  

Thanks: M. Cepeda 
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•  Thermal Γ (h ! γγ ) 

•  Higgs signal strengths  

•  Higgs self-coupling 
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H2φ   Barrier ? 

H-φ  Mixing 
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Z2 - breaking 
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•  Observable GW  
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φ
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φ

? 

F

? 

F1st order 2nd order 

Increasing mh  

SM EW: Cross over transition 

EW Phase Diagram 

How does this picture 
change in presence of new 
TeV scale physics ? What is 
the phase diagram ? 
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m
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Higgs Mass 
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Singlets 
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Singlets: Precision & Res Di-Higgs Prod 

Kotwal, No, R-M, Winslow  1605.06123 
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SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies   

SFOEWPT  •    

 h-S Mixing  
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4

Next gen pp 

LHC 

 EWPO 

See also: Huang et al, 1701.04442; 
Li et al, 1906.05289  
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•  Profumo, R-M, Wainwright, Winslow: 
1407.5342;  

•  see also Noble & Perelstein 
0711.3018 

Thanks: M. Cepeda 
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Models & Phenomenology 

Thanks: J. M. No 
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F
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F1st order 2nd order 

Increasing mh  

New scalars  

EW Multiplets: EWPT 

j

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195  65 

<Σ0 > 

•  Thermal loops 
•  Tree-level barrier 

Illustrate with real 
triplet: Σ ~ (1,3,0) 

H2φ2   Barrier ? 
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φ
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φ
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F

? 

F1st order 2nd order 

Increasing mh  

New scalars  

EW Multiplets: One-Step EWPT 

j

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195  

•  One-step: Sym phase ! Higgs phase 

66 

One step 
<Σ0 > 

Illustrate with real 
triplet: Σ ~ (1,3,0) 

H2φ2   Barrier ? 



67 

Real Triplet: One-Step EWPT 

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500 

Crossover 

FOEWPT 

•  One-step 
•  Non-perturbative 

•  Two-step region 
•  Pert studies to date 
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Real Triplet & EWPT 

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500 

Crossover 

FOEWPT 
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Disappearing 
charge track 
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IV. Outlook 
•  Determining the thermal history of EWSB is field 

theoretically interesting in its own right and of 
practical importance for baryogenesis and GW  

•  The scale TEW ! any new physics that modifies 
the SM crossover transition to a first order 
transition must live at M < 1 TeV  

•  Searches for new scalars and precision Higgs 
measurements at the LHC and prospective next 
generation colliders could conclusively determine 
the nature of the EWSB transition 
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Back Up Slides 



EWPT “Poster Child”: MSSM 
Light Stop Scenario 

Light Stop 
Scenario 

Thermal loops 
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EW Phase Transition: SUSY 

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Increasing mh  

New scalars  

Light RH stops also affect 
Higgs properties 

Katz, Perelstein, R-M, 
Winslow 1509.02934 

MSSM + δλ4 (Hu
† Hu )2   

Curtin, Jaiswal, Meade 1203.2932  
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Strong 1st Order EWPT 

Light Stop 
Scenario 

Beyond the MSSM: 
singlets, 2-step…. 

Definitive probe of the possibilities ! 
LHC + next generation colliders  
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The Higgs Portal 



Higgs Portal: Simple Scalar Extensions 

Extension EWPT DM DOF 

May be low-energy remnants of UV complete 
theory & illustrative of generic features 

 Real singlet:     Z2 

 Real singlet:     Z2 

 Complex Singlet 
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✔ 

✔ 

✔ 
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This talk 

This talk 



Higgs Portal: Simple Scalar Extensions 

Extension EWPT DM DOF 

May be low-energy remnants of UV complete 
theory & illustrative of generic features 
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Simplest Extension 

Standard Model + real singlet scalar 

Thanks: J. M. No 
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Simplest Extension 

Standard Model + real singlet scalar 

•  Strong first order EWPT 

•  Two mixed singlet-doublet states 



EW Phase Transition: New Scalars 
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φ
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φ

? 

F

? 

F1st order 2nd order 

Increasing mh  

New scalars  

Simplest Extension: 
two states h1 & h2 

Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010 
Espinosa, Konstandin, Riva NPB 854 (2012) 592 

<S > 

Real Singlet: φ ! S 

 m1 > 2 m2 

 m2 > 2 m1 
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EW Phase Transition: New Scalars 

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Increasing mh  

Resonant di-Higgs production 

No & RM, arXiv:1310.6035 : LHC Discovery w/ 100 fb-1 

<S > 

 m2 > 2 m1 

 m1 > 2 m2 

Simplest Extension: 
two states h1 & h2 

€ 

h1

€ 

h2

€ 

h1€ 

b

€ 

b 

 τ+

 τ-

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 



EWPT & Singlets: Res Di-Higgs Prod 

Kotwal, No, R-M, Winslow  1605.06123 
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SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies   

SFOEWPT  •    

 h-S Mixing  

 EWPO 

Li, R-M, Willocq 1906.05289 
See also: Huang et al, 1701.04442  

Max σ x BR  



EW Phase Transition: New Scalars 
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? 

F
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F1st order 2nd order 

<S > 

 m2 > 2 m1 

 m1 > 2 m2 

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 

Modified Higgs Self-Coupling 

h1 

h1 

h1 



EW Phase Transition: Singlet Scalars 

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Profumo, R-M, Wainwright, Winslow: 1407.5342; see 
also Noble & Perelstein 0711.3018 
 

<S > 

 m2 > 2 m1 

 m1 > 2 m2 

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 

Modified Higgs Self-Coupling 
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EW Phase Transition: Singlet Scalars 

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Chen, Kozaczuk, Lewis 2017 
 

<S > 

 m2 > 2 m1 

 m1 > 2 m2 

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 

Singlet-like pair production (off shell) 
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EW Phase Transition: Singlet Scalars 

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

<S > 

 m2 > 2 m1 

 m1 > 2 m2 

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 

89 
Profumo, MJRM, Shaugnessy ‘07 

Simplest Extension: two 
states h1 & h2 – h,S mixtures 

Real Singlet: φ ! S 

Increasing mh  

New scalars  



EW Phase Transition: Singlet Scalars 
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φ
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F
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F1st order 2nd order 

<S > 

 m2 > 2 m1 

 m1 > 2 m2 

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 

90 
Profumo, MJRM, Shaugnessy ‘07 

Collider probes 

•  Resonant di-Higgs production 

•  Precision Higgs measurements 

•  Non-resonant di-Higgs & exotic 
Higgs decays 
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SFOEWPT Benchmarks: Resonant di-Higgs 

SFOEWPT  •    

 h-S Mixing  

m2 ⇡ MN (37)

�(N ! `H) 6= �(N ! ¯̀H⇤) (38)

Lmass = yL̄H̃NR + h.c. + mNN̄RN
C

R
(39)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (40)

�(NR ! `H) 6= �(NR !
¯̀H⇤) (41)

m⌫ =
m

2
D

MR

(42)

hp
0
| J

EM
µ

|pi = Ū(p0)


F1�µ +

iF2

2M
�µ⌫q

⌫ +
iF3

2M
�µ⌫�5q

⌫ +
FA

M2
(q2

�µ � 6qqµ)�5

�
U(p) (43)

hp
0
| J

EM
µ

|pi
PV

=
FA

M2
Ū(p0)

⇥
(q2

�µ � 6qqµ)�5

⇤
U(p) (44)

Qquqd = ✏jkQ̄
j
uRQ̄

k
dR (45)

YB =
nB

s
= (8.82± 0.23)⇥ 10�11 (46)

mt̃R
⇠ 160 GeV (47)

bb̄�� & 4⌧ (48)

4

Next gen pp 

LHC 

 EWPO 

Kotwal, No, R-M, Winslow  1605.06123 



EW Phase Transition: Singlet Scalars 

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order 

Profumo, R-M, Wainwright, Winslow: 1407.5342; see 
also Noble & Perelstein 0711.3018 
 

<S > 

 m2 > 2 m1 

 m1 > 2 m2 

Mixed States: 
Precision $ 
ILC, CPEC, 
FCC-ee 

Modified Higgs Self-Coupling 
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Thanks: M. Cepeda 
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Modified Higgs Self-Coupling 
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Thanks: M. Cepeda 

Scan 
includes 
m2 > 2m1 



Gravitational Radiation 
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1.  Bubbles nucleate and grow 
2.  Expand in a plasma - create reaction 

fronts 
3.  Bubbles + fronts collide - violent process 
4.  Sound waves left behind in plasma 
5.  Turbulence; damping 

Thanks: D. Weir 
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Heavy Real Singlet:  EWPT & GW 

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604 
•  One-step 
•  Non-perturbative 

 Latent heat 

 “D
ur

at
io

n”
 

LISA SNR 

Non-dynamical heavy BSM scalars 
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Heavy Real Singlet:  EWPT & GW 

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604 
•  One-step 
•  Non-perturbative 

 Latent heat 
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LISA SNR Dynamical BSM 
scalars 



Higgs Portal: Simple Scalar Extensions 

Extension EWPT DM DOF 

May be low-energy remnants of UV complete 
theory & illustrative of generic features 

 Real singlet:     Z2 

 Real singlet:     Z2 

 Complex Singlet 

 EW Multiplets 

1 

1 

2 

3+ 

✔ 

✔ 

✔ 

✔ 

✖ 

✔ 

✔ 

✔ 
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EW Multiplets: Two-Step EWPT 

j

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195  

•  One-step: Sym phase ! Higgs phase 
•  Two-step: successive EW broken 

phases 
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One step 
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One step 

Two step 

<Σ0 > 1 
2 

1

b4

!
1

2
a2v

2
0 !m2

!

"
<

1

2
m2

Hv
2
0: (7)

Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.

100 120 140 160 180 200
0.0
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b 4
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EW vacuum
unstable

AB

2 1 0 1 2
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m

b 4
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EW vacuum
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A B

FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)

035013-4
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EW Multiplets: Two-Step EWPT 

<φ0 > 

Baryogenesis 

Quench 
sphalerons 

Small entropy 
dilution 

φ  dark 
matter 

φ0

j

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195  

•  Step 1: thermal loops 
•  Step 2: tree-level barrier 
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One step 

Two step 

Thanks: M. Cepeda 
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New scalars  
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One step 

Two step 

Thanks: J. M. No See S. Huber Talk 
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<Σ0 > 

•  Thermal loops 
•  Tree-level barrier 



EWSB: The Scalar Potential  
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From Nature 

What was the thermal history of EWSB ? 
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From Nature 

What was the thermal history of EWSB ? 



EWPT: Theory & Phenomenology 

•  What models can lead to a (strong) first order 
electroweak phase transition (EW baryogenesis 
& gravitational waves) ? 

•  Can they also yield contributions to ΩDM ? 

•  How can they be tested experimentally ? 

•  How reliably can we compute phase transition 
properties & make the connection with 
phenomenology ? 
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