The Electroweak Phase Transition: A Collider Target

M.J. Ramsey-Musolf

- T.D. Lee Institute & Shanghai Jiao Tong Univ.
- UMass-Amherst

My pronouns: he/him/his

CFHEP Mini Workshop on Precision Physics Beijing, October 2019

Key Ideas for this Talk

- The "electroweak temperature" → a scale provided by nature that gives us a clear BSM target for colliders
- Simple argument → BSM physics that changes the thermal history of EWSB cannot be too heavy or too feeble
- Concrete BSM models → exemplify these arguments

Key Ideas for this Talk

- The "electroweak temperature" → a scale provided by nature that gives us a clear BSM target for colliders*
- Simple argument → BSM physics that changes the thermal history of EWSB cannot be too heavy or too feeble
- Concrete BSM models → exemplify these arguments

* Contrast with other open problems: neutrino mass, dark matter, naturalness, flavor… ³

Key Ideas for this Talk

- The "electroweak temperature" → a scale provided by nature that gives us a clear BSM target for colliders*
- Simple argument → BSM physics that changes the thermal history of EWSB cannot be too heavy or too feeble Precision !
- Concrete BSM models → exemplify these arguments

* Contrast with other open problems: neutrino mass, dark matter, naturalness, flavor… ⁴

The Origin of Matter

What can the LHC & future colliders teach us about open questions in cosmology ?

Dark Matter

Dark Matter

Thanks: Z. Liu

Baryogenesis Scenarios

8

Baryogenesis Scenarios

Era of EWSB: $t_{univ} \sim 10 \text{ ps}$

Baryogenesis Scenarios

Era of EWSB: $t_{univ} \sim 10 \text{ ps}$

Main Theme for This Talk

$T_{EW} \rightarrow EW$ phase transition is a target for the LHC & beyond

Outline

- I. Context & Questions
- II. EWPT: A Collider Target
- III. Models & Phenomenology
- IV. Outlook

I. Context & Questions

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

Thermal History of Symmetry Breaking

QCD Phase Diagram → EW Theory Analog?

EWSB Transition: St'd Model

Increasing m_h

EWSB Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

EW Phase Diagram

SM EW: Cross over transition

EWSB Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ? SFOEWPT ?

S. Weinberg, PRD 9 (1974) 3357

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

EW Phase Transition: Baryogen & GW

EW Phase Transition: Baryogen & GW

II. EWPT: A Collider Target

MJRM 19010.NNNNN

Mass scale Precision

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \cdots$$

$$T_0^2 = (8\lambda + \text{ loops}) \left(\frac{3}{2}g^2 + g'^2 + 2y_t^2 + \cdots\right)^{-1} v^2$$

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \cdots$$

$$T_0^2 = (8\lambda + \text{ loops}) \left(\frac{3}{2}g^2 + g'^2 + 2y_t^2 + \cdots\right)^{-1} v^2$$

$$T_0 \sim 140 \text{ GeV} \equiv T_{EW}$$

29

Generate finite-T barrier

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

$$\Delta V(h,T) \supset -\frac{T}{12\pi} M_{\phi}(h,T)^3$$

$$M_{\phi}(h,T)^{3} = \left[\frac{a_{2}}{12}T^{2} + b_{2} + \frac{a_{2}}{4}h^{2}\right]^{3/2}$$

$$\Delta V(h,T) \supset -\frac{T}{12\pi} M_{\phi}(h,T)^3$$

$$M_{\phi}(h,T)^{3} = \begin{bmatrix} \frac{a_{2}}{12}T^{2} + b_{2} + \frac{a_{2}}{4}h^{2} \end{bmatrix}^{3/2}$$

Choose b_{2} , a_{2} to cancel at $T \sim T_{EW}$

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

- Tree-level barrier: $a_2 \phi^+ \phi H^+ H$
- Want $T_1 > T_2 \sim T_{EW}$

• Tree-level barrier: $a_2 \phi^+ \phi H^+ H$

Want
$$T_1 > T_2 \sim T_{EW}$$

$$V(\varphi, T) = \frac{1}{2} \left[-|b_2| + \frac{T^2}{6} \left(a_2 + \frac{3}{2} b_4 \right) \right] \varphi^2 + \frac{b_4}{4!} \varphi^4$$

42

T_{EW} : A Mass Scale for Colliders

- Foregoing arguments: good up to factor of $\sim 2 \rightarrow M_{\phi} < 800 \text{ GeV}$ (-ish)
- QCD production: LHC exclusion → φ is colorless
- Electroweak or Higgs portal (h- ϕ mixing...) production $\rightarrow \sigma_{PROD} \sim (1-500)$ fb (LHC) and (0.1-25) pb (100 TeV pp)
- Precision Higgs studies: see ahead

Higgs Boson Properties

- $\Gamma(h \rightarrow \gamma\gamma)$
- Higgs signal strengths
- Higgs self-coupling

 $H^2\phi^2$ Barrier ?

- Higgs signal strengths
- Higgs self-coupling

$H \rightarrow \gamma \gamma$: Is There a Barrier ?

49

$H \rightarrow \gamma \gamma$: Is There a Barrier ?

Thanks: M. Cepeda

- Thermal $\Gamma(h \rightarrow \gamma \gamma)$
- Higgs signal strengths
- Higgs self-coupling

 $H^2\phi$ Barrier ?

- Thermal $\Gamma(h \rightarrow \gamma \gamma)$
- Higgs signal strengths
- Higgs self-coupling

• Thermal $\Gamma(h \rightarrow \gamma \gamma)$

• Thermal $\Gamma(h \rightarrow \gamma \gamma)$

Strong First Order EWPT

- Prevent baryon number washout
- Observable GW

Strong First Order EWPT

- Prevent baryon number washout
- Observable GW

Strong First Order EWPT

- Prevent baryon number washout
- Observable GW

$$\frac{|a_1|}{2\lambda T_{\rm EW}} \gtrsim 1 \longrightarrow \begin{vmatrix} |\sin\theta| \ge 0.01 \\ |\Delta\lambda/\lambda| \ge 0.003 \end{vmatrix}$$

III. Models & Phenomenology

Models & Phenomenology

What BSM Scenarios?

SM + Scalar Singlet	Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17, Gould, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19
SM + Scalar Doublet (2HDM)	Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18
SM + Scalar Triplet	Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18
MSSM	Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14
NMSSM	Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15

Thanks: J. M. No

Models & Phenomenology

What BSM Scenarios?

SM + Scalar Singlet	Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17, Gould, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19
SM + Scalar Doublet (2HDM)	Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18
SM + Scalar Triplet	Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18
MSSM	Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14
NMSSM	Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15

Thanks: J. M. No

EW Phase Transition: Singlet Scalars

Increasing m_h

Lattice	Authors	$M_{\rm h}^C$ (GeV)
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ?

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Higgs Self Coupling

- Profumo, R-M, Wainwright, Winslow: 1407.5342;
- see also Noble & Perelstein 0711.3018

Thanks: M. Cepeda

Models & Phenomenology

What BSM Scenarios?

SM + Scalar Singlet	Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17, Gould, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19
SM + Scalar Doublet (2HDM)	Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18
SM + Scalar Triplet MSSM	Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18 Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14
NMSSM	Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15

Thanks: J. M. No

EW Multiplets: EWPT

• Tree-level barrier

Illustrate with real triplet: $\Sigma \sim (1,3,0)$

T>T.

T=T,

 $< \Sigma^{0} >$

$H^2\phi^2$ Barrier ?

EW Multiplets: One-Step EWPT

$H^2\phi^2$ **Barrier** ?

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

 $<\Sigma^0>$

T=T,

Real Triplet: One-Step EWPT

FOEWPT

67

IV. Outlook

- Determining the thermal history of EWSB is field theoretically interesting in its own right and of practical importance for baryogenesis and GW
- The scale T_{EW} → any new physics that modifies the SM crossover transition to a first order transition must live at M < 1 TeV
- Searches for new scalars and precision Higgs measurements at the LHC and prospective next generation colliders could conclusively determine the nature of the EWSB transition

Back Up Slides
EWPT "Poster Child": MSSM Light Stop Scenario

Thermal loops

EW Phase Transition: SUSY

$MSSM + \delta \lambda_4 (H_u^{\dagger} H_u)^2$

Katz, Perelstein, R-M, Winslow 1509.02934

Strong 1st Order EWPT

Definitive probe of the possibilities \rightarrow LHC + next generation colliders

The Higgs Portal

Extension	DOF	EWPT	DM
Real singlet: 🔀	1	~	*
Real singlet: Z_2	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

	Extension	DOF	EWPT	DM
This talk	Real singlet: X_{g}	1	~	*
	Real singlet: Z ₂	1	~	~
	Complex Singlet	2	~	-
This talk	EW Multiplets	3+	~	~

Extension	DOF	EWPT	DM
Real singlet: X_{g}	1	 ✓ 	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

Simplest Extension

Standard Model + real singlet scalar

•••

Thanks: J. M. No

Simplest Extension

Standard Model + real singlet scalar

$$V_{\rm HS} = \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

- Strong first order EWPT
- Two mixed singlet-doublet states

EW Phase Transition: New Scalars

EW Phase Transition: New Scalars

EWPT & Singlets: Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

See also: Huang et al, 1701.04442

EW Phase Transition: New Scalars

Modified Higgs Self-Coupling

300

m₁ [Ge

T>T,

F

100

0 L 100

200

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble & Perelstein 0711.3018

87

 $m_1 > 2 m_2$

Singlet-like pair production (off shell)

Chen, Kozaczuk, Lewis 2017

SFOEWPT Benchmarks: Resonant di-Higgs

Kotwal, No, R-M, Winslow 1605.06123

Gravitational Radiation

Thanks: D. Weir

- 1. Bubbles nucleate and grow
- 2. Expand in a plasma create reaction fronts
- 3. Bubbles + fronts collide violent process
- 4. Sound waves left behind in plasma
- 5. Turbulence; damping

Heavy Real Singlet: EWPT & GW

- One-step
- Non-perturbative

Heavy Real Singlet: EWPT & GW

- One-step
- Non-perturbative

Extension	DOF	EWPT	DM
Real singlet: 🗙	1	~	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

- One-step: Sym phase → Higgs phase
- Two-step: successive EW broken
 phases

- One-step: Sym phase → Higgs phase
- Two-step: successive EW broken
 phases

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

 $\leq \phi^0 >$

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

Thanks: M. Cepeda

102

EW Multiplets: 2HDM

Thanks: J. M. No

See S. Huber Talk

103

EW Multiplets: EWPT

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

EW Multiplets: EWPT

 $\downarrow F$

T>T_

T=T,

T<T.

 $< \Sigma^0 >$

- Thermal loops
- Tree-level barrier

EWSB: The Scalar Potential

What was the thermal history of EWSB?

EWSB: The Scalar Potential

What was the thermal history of EWSB?

EWPT: Theory & Phenomenology

- What models can lead to a (strong) first order electroweak phase transition (EW baryogenesis & gravitational waves) ?
- Can they also yield contributions to Ω_{DM} ?
- How can they be tested experimentally ?
- How reliably can we compute phase transition properties & make the connection with phenomenology ?