Evaluation of multiloop integrals

Yan-Qing Ma

Peking University

Based on works done with Xiao Liu(刘霄) and Chen-Yu Wang(王辰宇) 1711.09572, 1801.10523 and works in preparation

Mini-workshop on precision physics and future colliders 2019/10/14, IHEP, Beijing

I. Introduction

II. A New Representation

III. Reduction

IV. Outlook

Quantum field theory

QFT: the underlying theory of modern physics

- Solving QFT is important for testing the SM and discovering NP
- How to solve QFT:
- Nonperturbatively (e.g. lattice field theory): discretize spacetime, numerical simulation complicated, application limited

 Perturbatively (small coupling constant): generate and calculate Feynman amplitudes, relatively simpler, the primary method

Super computer

Perturbative QFT

1. Generate Feynman amplitudes

- Feynman diagrams and Feynman rules
- New developments: unitarity, recurrence relation

2. Calculate Feynman loop integrals

3. Calculate phase-space integrals

- Monte Carlo simulation with IR subtractions
- Relating to loop integrals

$$\int \frac{d^D p}{(2\pi)^D} (2\pi) \delta_+(p^2) = \lim_{\eta \to 0^+} \int \frac{d^D p}{(2\pi)^D} \left(\frac{i}{p^2 + i\eta} + \frac{-i}{p^2 - i\eta} \right)$$

Feynman loop integrals

The key to apply pQFT

$$\lim_{\eta \to 0^+} \int \prod_{i=1}^{L} \frac{\mathrm{d}^D \ell_i}{\mathrm{i} \pi^{D/2}} \prod_{\alpha=1}^{N} \frac{1}{(q_{\alpha}^2 - m_{\alpha}^2 + \mathrm{i} \eta)^{\nu_{\alpha}}}$$

- q_{α} : linear combination of loop momenta and external momenta
- Taking $\eta \to 0^+$ before taking $D \to 4$

> Theorem:

Smirnov, Petukhov, 1004.4199

For a given set of propagators, Feynman integrals form a finite-dimensional linear space

One-loop calculation: (up to 4 legs) satisfactory approaches existed as early as 1970s

't Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

Developments of unitarity-based method in the past decade made the calculation efficient for multi-leg problems

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237

> About 40 years later, a satisfactory method for multi-loop calculation is still missing

1) Reduce loop integrals to basis (Master Integrals)

 Integration-by-parts (IBP) reduction: main bottleneck

Chetyrkin, Tkachov, NPB (1981) Laporta, 0102033

extremely time consuming for multi-scale problems

unitarity-based reduction is efficient but cannot give complete reduction

2) Calculate MIs/original integrals

- Differential equations (depends on reduction and BCs) Kotikov, PLB (1991)
- Difference equations (depends on reduction and BCs) Laporta, 0102033
- Sector decomposition (extremely time-consuming) Binoth, Heinrich, 0004013
- Mellin-Barnes representation (nonplanar, time)
 Usyukina (1975)
 Smirnov, 9905323

A result of dimensional regularization

Chetyrkin, Tkachov, NPB (1981)

• M_i scalar integrals, Q_i polynomials in D, \vec{s}, η

> For each problem, the number of MIs is FINITE

- Smirnov, Petukhov, 1004.4199
 Feynman integrals form a finite dimensional linear space
- Reduce thousands of loop integrals to much less MIs

Difficulty of IBP reduction

Solve IBP equations

Laporta's algorithm, 0102033

$$\sum_{i=1} Q_i(D, \vec{s}, \eta) \mathcal{M}_i(D, \vec{s}, \eta) = 0$$

- Very large scale of linear equations (can be billions of) E.g., Laporta 1910.01248
- Coupled, it is hard to solve
- Hard to do analytic Gaussian elimination for many variables D, \vec{s}, η
- Too slow if solving it numerically for each phase space point

Cutting-edge problems

- Hundreds GB RAM
- Months of runtime using super computer

Differential Equation + Boundary Condition

$$\begin{split} \underbrace{s = p^2}_{m} & I(D; \{1, 1\}) = \int \frac{\mathrm{d}^D \ell}{\mathrm{i} \pi^{D/2}} \frac{1}{(\ell^2 - m^2)[(\ell + p)^2 - m^2]} \\ \frac{\partial}{\partial m^2} I(D; \{1, 1\}) &= I(D; \{2, 1\}) + I(D; \{1, 2\}) \\ & = \frac{2(D-3)}{4m^2 - s} I(D; \{1, 1\}) - \frac{D-2}{m^2(4m^2 - s)} I(D; \{1, 0\}) \\ \frac{\partial}{\partial m^2} I(D; \{1, 0\}) &= I(D; \{2, 0\}) \\ & = \frac{D-2}{2m^2} I(D; \{1, 0\}) \\ I(D; \{1, 1\})|_{m^2 = 0} = \Gamma(2 - D/2)(-s)^{D/2 - 2} \frac{\Gamma(D/2 - 1)^2}{\Gamma(D - 2)}, \quad I(D; \{1, 0\})|_{m^2 = 0} = \cdots \end{split}$$

•

Step1: Set up the differential equation

• Differentiate w.r.t. invariants, such as m^2 , p^2

IBP relations $\frac{\partial}{\partial x}\vec{I}(x;\epsilon) = A(x;\epsilon)\vec{I}(x;\epsilon)$

Kotikov, 1991

- Step2: Calculate boundary condition
 - Calculate integrals at special value of m^2 , p^2
 - General method?

Step3: Solve the differential equation

- Analytically (if possible) $\partial_x \vec{I}(x;\epsilon) = \epsilon A(x) \vec{I}(x;\epsilon)$ Henn 2013
- Numerically

> Analytical: Higgs \rightarrow 3 partons (Euclidean Region)

> Numerical: Quarkonium decay at NNLO

Recent developments

Improvements for IBP reduction

- Finite field method Manteuffel, Schabinger, 1406.4513
- Direct solution Kosower, 1804.00131
- Syzygies method Böhm, Georgoudis, Larsen, Schönemann, Zhang, 1805.01873
- Obtain one coefficient at each step Chawdhry, Lim, Mitov, 1805.09182
- Expansion of small parameters Xu, Yang, 1810.12002; Mishima, 1812.04373
- Intersection Numbers Frellesvig, et. al., 1901.11510

> Improvements for evaluating scalar integrals

- Quasi-Monte Carlo method Li, Wang, Yan, Zhao, 1508.02512
- Finite basis Manteuffel, Panzer, Schabinger, 1510.06758
- Uniform-transcendental basis Boels, Huber, Yang, 1705.03444
- Loop-tree duality Capatti, Hirschi, Kermanschah, Ruijl, 1906.06138

- > 2→2 process with massive particles at twoloop order: almost done $g + g \rightarrow t + \bar{t}$, $g + g \rightarrow H + H(g)$
- Very time-consuming
 - Two-loop $g + g \rightarrow H + H(g)$: complete IBP reduction cannot be achieved within tolerable time Borowka et. al., 1604.06447 Jones, Kerner, Luisoni, 1802.00349
 - Two-loop decay $Q + \overline{Q} \rightarrow g + g$, MIs cost $O(10^5)$ CPU core-hour Feng, Jia, Sang, 1707.05758

> Current frontier: $2 \rightarrow 3$ processes at two loop

5-gluon scattering may be feasible; hard for massive particles

New ideas are badly needed

I. Introduction

II. A New Representation

III. Reduction

IV. Outlook

Modify Feynman loop integral by keeping finite η

$$\mathcal{M}(D,\vec{s},\eta) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \prod_{\alpha=1}^{N} \frac{1}{(\mathcal{D}_{\alpha} + \mathrm{i}\eta)^{\nu_{\alpha}}} \qquad \mathcal{D}_{\alpha} \equiv q_{\alpha}^{2} - m_{\alpha}^{2}$$

- Take it as an analytical function of η
- Physical result is defined by

$$\mathcal{M}(D,\vec{s},0)\equiv \lim_{\eta\to 0^+}\mathcal{M}(D,\vec{s},\eta)$$

Expansion at infinity

> Expansion of propagators around $\eta = \infty$

$$\frac{1}{[(\ell+p)^2 - m^2 + \mathrm{i}\eta]^{\nu}} = \frac{1}{(\ell^2 + \mathrm{i}\eta)^{\nu}} \sum_{n=0}^{\infty} \frac{(\nu)_n}{n!} \left(\frac{-2\ell \cdot p - p^2 + m^2}{\ell^2 + \mathrm{i}\eta}\right)^n$$

- Only one region in the method of region: $l^{\mu} \sim |\eta|^{1/2}$
- No external momenta in denominator, vacuum integrals
- Simple enough to deal with

> Vacuum MIs with equal internal masses

- Analytical results are known up to 3-loop
- Numerical results are known up to 5-loop

Davydychev, Tausk, NPB(1993) Broadhurst, 9803091 Kniehl, Pikelner, Veretin, 1705.05136

Schroder, Vuorinen, 0503209 Luthe, PhD thesis (2015) Luthe, Maier, Marquard, Ychroder, 1701.07068

$$\mathcal{D}_1 = (\ell_1 + p)^2 - m^2, \ \mathcal{D}_2 = \ell_2^2, \ \mathcal{D}_3 = (\ell_1 + \ell_2)^2$$

$$I_{111} = \eta^{D-3} \left\{ \left[1 - \frac{D-3}{3} \frac{m^2}{i\eta} + \frac{(D+4)(D-3)}{9D} \frac{p^2}{i\eta} \right] I_{2,2}^{\text{bub}} - i \left[\frac{(D-2)^2}{3D} \frac{p^2}{i\eta} \right] I_{2,1}^{\text{bub}} + \mathcal{O}(\eta^{-2}) \right\}$$

A new representation

> Asymptotic expansion

$$\mathcal{M}(D, \vec{s}, \eta) = \eta^{LD/2 - \sum_{\alpha} \nu_{\alpha}} \sum_{\mu_0 = 0}^{\infty} \eta^{-\mu_0} \mathcal{M}^{\text{bub}}_{\mu_0}(D, \vec{s})$$
$$\mathcal{M}^{\text{bub}}_{\mu_0}(D, \vec{s}) = \sum_{k=1}^{B_L} I^{\text{bub}}_{L,k}(D) \sum_{\vec{\mu} \in \Omega^r_{\mu_0}} C^{\mu_0 \dots \mu_r}_k(D) s_1^{\mu_1} \dots s_r^{\mu_r}$$

- $I_{L,k}^{\text{bub}}(D)$: k-th master vacuum integral at L-loop order
- $C_k^{\mu_0...\mu_r}(D)$: rational functions of D

A new representation

- Uniqueness theorem of analytical functions: physical FI is uniquely determined by this asymptotic series via analytical continuation
- A new series representation of FIs
- All FIs (therefore scattering amplitudes) are determined by equal-mass vacuum integrals

I. Introduction

II. A New Representation

III. Reduction

IV. Outlook

Reduction

- Find relations between loop integrals
- Use them to express all loop integrals as linear combinations of MIs

> Relations among $G \equiv \{M_1, M_2, \dots, M_n\}$ $\sum_{i=1}^n Q_i(D, \vec{s}, \eta) \mathcal{M}_i(D, \vec{s}, \eta) = 0$

• $Q_i(D, \vec{s}, \eta)$: homogeneous polynomials of \vec{s}, η of degree d_i

Constraints from mass dimension

$$2d_1 + \operatorname{Dim}(\mathcal{M}_1) = \cdots = 2d_n + \operatorname{Dim}(\mathcal{M}_n)$$

• Only 1 degree of freedom in $\{d_i\}$, chosen as $d_{\max} \equiv Max \{d_i\}$

Find relations

Decomposition of
$$Q_i(D, \vec{s}, \eta)$$

$$\sum_{i=1}^{n} Q_i(D, \vec{s}, \eta) \mathcal{M}_i(D, \vec{s}, \eta) = 0$$

$$Q_{i}(D, \vec{s}, \eta) = \sum_{(\lambda_{0}, \vec{\lambda}) \in \Omega_{d_{i}}^{r+1}} Q_{i}^{\lambda_{0} \dots \lambda_{r}}(D) \eta^{\lambda_{0}} s_{1}^{\lambda_{1}} \cdots s_{r}^{\lambda_{r}}$$
$$\implies \sum_{k, \rho_{0}, \vec{\rho}} f_{k}^{\rho_{0} \dots \rho_{r}} \mathcal{I}_{L,k}^{\text{bub}}(D) \eta^{\rho_{0}} s_{1}^{\rho_{1}} \cdots s_{r}^{\rho_{r}} = 0$$

> Linear equations: $f_k^{\rho_0 \dots \rho_r} = 0$

- With enough constraints $\Rightarrow Q_i^{\lambda_0 \dots \lambda_r}(D)$
- With finite field technique, only integers in a finite field are involved, equations can be efficiently solved
- > Relations among $G \equiv \{M_1, M_2, ..., M_n\}$ with fixed d_{\max} are fully determined

Reduction

\succ With $G = G_1 \cup G_2$, satisfy

- G_1 is more complicated than G_2
- G_1 can be reduced to G_2

Algorithm Search for simplest relations

- **1. Set** $d_{\max} = 0$
- **2.** Find out all reduction relations among G with fixed d_{\max}
- **3.** If obtained relations are enough to determine G_1 by G_2 , stop;

else, $d_{\text{max}} = d_{\text{max}} + 1$ and go to step 2

\succ Conditions for G_1 and G_2

- **1.** Relations among G_1 and G_2 are not too complicated: easy to find
- 2. $#G_1$ is not too large: numerically diagonalize relations easily

Reduction scheme with only dots

$$\succ \mathbf{FIs:} \ \vec{\nu} = (\nu_1, \dots, \nu_N), \nu_i \ge 0$$

- * $0^{\pm} \equiv$ Identity, $m^{\pm} \equiv (m-1)^{\pm} 1^{\pm}$
- $\mathbf{1}^+(5,1,0,3) = \{(6,1,0,3), (5,2,0,3), (5,1,0,4)\}$
- $\mathbf{1}^{-}(5,1,0,3) = \{(4,1,0,3), (5,0,0,3), (5,1,0,2)\}$
- > 1-loop: $G_1 = \mathbf{1}^+ \vec{\nu}, G_2 = \mathbf{1}^- \mathbf{1}^+ \vec{\nu}$

Duplancic and Nizic, 0303184

➤ Multi-loop:

 $G_1 = \mathbf{m}^+ \vec{\nu}, G_2 = \{\mathbf{1}^- \mathbf{m}^+, \mathbf{1}^- (\mathbf{m} - \mathbf{1})^+, \dots, \mathbf{1}^- \mathbf{1}^+\}\vec{\nu}$

- m = 2,3 in examples, # G_1 is not too large, include dozens of integrals
- Relations among G_1 and G_2 are not too complicated, see examples

A step-by-step reduction is realized!

> 2-loop g + g → H + H and g + g → g + g + g

- Relations can be obtained by a single-core laptop in a few hours
- Diagonalizing at each phase space point (floating number): 0.01 second
- Results checked numerically by FIRE

Method similar to the reduction of denominators (paper in preparation)

\succ Use η expansion to directly reduce amplitudes

Wang, Li, Basat, 1901.09390

Set up and solve DEs of MIs

> 2-loop non-planar sector for $Q + \overline{Q} \rightarrow g + g$

• 168 master integrals

Feng, Jia, Sang, 1707.05758

- Traditional method sector decomposition: $O(10^4)$ CPU core-hour
- Our method: a few minutes

MIs can be thought as special functions, and DEs tell us how to evaluate these special functions

Practical use

> Use η expansion to determine MIs

Zhang, Wang, Liu, Ma, Meng, Chao, 1810.07656

$$\begin{split} \frac{\mathrm{d}\boldsymbol{I}(\epsilon,z)}{\mathrm{d}z} &= A(\epsilon,z)\boldsymbol{I}(\epsilon,z)\\ d_{\mathrm{NLO}}^{[1]}(z) &= \frac{\alpha_s^3}{2\pi N_c m_Q^3} \times \left(d^{[1]}(z) + \ln\left(\frac{\mu_r^2}{4m_Q^2}\right) b_0 d_{\mathrm{LO}}^{(0)}(z) + \ln\left(\frac{\mu_f^2}{4m_Q^2}\right) f(z) \right) \,,\\ d_{\mathrm{NLO}}^{[8]}(z) &= \frac{\alpha_s^3 (N_c^2 - 4)}{4\pi N_c (N_c^2 - 1) m_Q^3} \times \left(d^{[8]}(z) + \ln\left(\frac{\mu_r^2}{4m_Q^2}\right) b_0 d_{\mathrm{LO}}^{(0)}(z) + \ln\left(\frac{\mu_f^2}{4m_Q^2}\right) f(z) \right) \\ &= \begin{cases} -\frac{N_c}{2z} + \sum_{i=0}^2 \sum_{j=0}^\infty \ln^i z \, (2z)^j \left(A_{ij}^f \, n_f + A_{ij}^{[1/8]} \, N_c + \frac{A_{ij}^N}{N_c} \right) \,, & \text{for } 0 < z < \frac{1}{4} \\ \sum_{j=0}^\infty (2z - 1)^j \left(B_j^f \, n_f + B_j^{[1/8]} \, N_c + \frac{B_j^N}{N_c} \right) \,, & \text{for } \frac{1}{4} \le z \le \frac{3}{4} \end{split}$$

$$\sum_{i=0}^{3} \sum_{j=0}^{\infty} \ln^{i} (1-z) \left(2-2z\right)^{j} \left(C_{ij}^{f} n_{f} + C_{ij}^{[1/8]} N_{c} + \frac{C_{ij}^{N}}{N_{c}}\right), \quad \text{for } \frac{3}{4} < z < 1$$

of z. To obtain about 150-digit precision for any value of z, we will attach an ancillary file for the arXiv preprint in future, in which these coefficients will be calculated up to j = 500 with 150 digits for each coefficient.

• Use η expansion at $z = \frac{1}{4}, \frac{3}{4}$ to obtain 200-digit precision

• Combine η expansion and numerical Des w.r.t. kinematic variables

I. Introduction

II. A New Representation

III. Reduction

IV. Outlook

- A new (series) representation: Feynman integrals are fully determined by vacuum integrals
- A general strategy to do reduction
- A general strategy to evaluate MIs
- Two-loop examples: our method is correct and efficient
- Application to fragmentation function: correct and helpful

- A package to do systematic reduction
 - Express all FIs as linear combinations of MIs
- A package to calculate MIs
 - Can be thought as a multi-loop version of "looptools"

Thank you!