

BSM phenomenology at the next-to-leading order

Benjamin Fuks

LPTHE / Sorbonne Université

Mini-workshop on precision physics and future colliders

IHEP, Beijing, 14 October 2019

A need for precision predictions for BSM?

 Final words on any potential new physics at the LHC
 Accurate measurements + precision predictions (NLO QCD + PS)
 New physics is standard in the simulation tools
 20-25 years of developments
 Simulations at the NLO accuracy in QCD can be easily achieved *For any model ~ the MADGRAPH5_aMC@NLO framework

A comprehensive approach to new physics calculations

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Outline

Automating NLO calculations in QCD for new physics

NLO calculations in a nutshell

Loop calculations

Matching fixed order with parton showers

[Frederix, Frixione, Maltoni & Stelzer (JHEP'09); Frixione & Webber (JHEP'02)]

Intermediate resonances

[Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (1907.04898)]

* There are different ways to handle this (momenta projections)

Supersymmetry @ NLO

SUSY rates at 13 TeV (simplified models)

[Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (1907.04898)]

Fixed-order distributions: jet properties

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15; PLB'16)]

Two potential jet origins

- ★ Decay jet (hard)
- * Radiation jet (soft, not for the 1st/2nd jets)
- Constant K-factors not accurate
 - \star Normalisation modification
 - \star Distortion of the shapes
 - \star Reduction of the theoretical uncertainties

NLO+PS distributions: jet properties

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15; PLB'16)]

Impact of the uncertainties ~ future colliders

Araz, Frank & BF (to appear)]

Treatment of the resonances

[Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (1907.04898)]

	[fb]	DR	DR + I	DS		LO		
$\tilde{g}\tilde{g}$	$\sigma_{ m inclusive}$	0.331	$0.330^{+19\%}_{-18\%}\pm28\%$	0.327	0.322	0.330	0.330	$0.187^{+44\%}_{-29\%}\pm27\%$
	$\sigma_{ m fiducial}$	0.228	$0.227^{+19\%}_{-18\%}\pm28\%$	0.225	0.222	0.228	0.227	$0.128^{+44\%}_{-29\%}\pm27\%$
$\tilde{g}\tilde{q}$	$\sigma_{ m inclusive}$	8.42	$8.39^{+12\%}_{-14\%}\pm 6.9\%$	8.38	8.35	8.41	8.40	$5.49^{+38\%}_{-25\%} \pm 7.0\%$
	$\sigma_{ m fiducial}$	5.93	$5.91^{+12\%}_{-14\%} \pm 6.9\%$	5.90	5.87	5.93	5.92	$3.86^{+38\%}_{-26\%}\pm7.0\%$
$\tilde{q}\tilde{q}$	$\sigma_{ m inclusive}$	20.4	$20.4^{+7.8\%}_{-10\%}\pm2.2\%$	20.4	20.4	20.4	20.4	$14.9^{+30\%}_{-22\%} \pm 2.2\%$
	$\sigma_{ m fiducial}$	14.8	$14.8^{+7.8\%}_{-9.9\%}\pm2.2\%$	14.8	14.7	14.8	14.8	$10.8^{+30\%}_{-21\%}\pm2.2\%$

Benchmark (allowed by data)

- ★ Multi-TeV squarks and gluinos
- * 50 GeV lightest neutralino (decays into jets and missing energy)
- ***** Typical H_T /MET selection (+ N_{jets} requirement)

NLO impact

- * Large K-factors (especially for $\tilde{g}\tilde{g}$), reduction of the theory errors
- * 50 GeV lightest neutralino (decays into jets and missing energy)
- * Results compatible regardless of how resonances are treated

Dark matter @ NLO

Top-philic dark matter

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

Benjamin Fuks - 14.10.2019 - 17

NLO effects on a CLs

[Arina, Backovic, Conte, BF, Guo, Heisig, Hespel, Krämer, Maltoni, Martini, Mawatari, Pellen & Vryonidou (JHEP'16)]

3rd generation VLQ @ NLO

Single VLQ production: third generation

[Cacciapaglia, Carvalho, Deandrea, Flacke, BF, Majumder, Panizzi & Shao (PLB`I9)]

Leading jet pseudorapidity

[Cacciapaglia, Carvalho, Deandrea, Flacke, BF, Majumder, Panizzi & Shao (PLB`19)]

Leading jet transverse momentum

[Cacciapaglia, Carvalho, Deandrea, Flacke, BF, Majumder, Panizzi & Shao (PLB`19)]

Summary

Summary

NLO-QCD simulations for new physics are easy to handle								
In particular via a joint use of FEYNRULES and MADGRAPH5_aMC@NLO								
Many models are publicly available								
 ★ Supersymmetric (simplified or not) models ★ BSM Higgs models 								
★ Dark matter simplified models	[http://feynrules.irmp.ucl.ac.be/wiki/NLOModels]							
 ★ Higgs and top effective field theories ★ Vector-like quark models ★ Extra gauge bosons 								
 Impact NLO effects are important and should Shape distortion, large K-factors Uncertainties under better control More robust predictions 	d be accounted for							
	;							

``