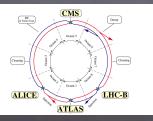
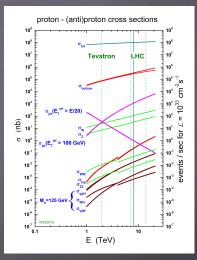
$t\bar{t}$ Analyses at ATLAS

Yichen Li (DESY)

EPD seminar


IHEP, Beijing, 27/9/2019


Outline (Timeline) Hadron Collider -> q/g -> ti -> decang Xsec -> Measurements / Interpre-Cartion Spin QED/QCD Selection < Reconstruction < ATLASE observable descup products

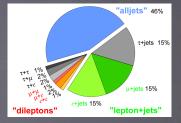
Large Hadron Collider

Proton-proton collision

- 7 TeV designed beam energy (up to now: 3.5/4/6.5 TeV)
- colliding quarks and gluons
- factory of H/W/Z/top/...
- general: ATLAS and CMS
- b physics: LHCb
- heavy ion: ALICE

$t\overline{t}$ Production @LHC

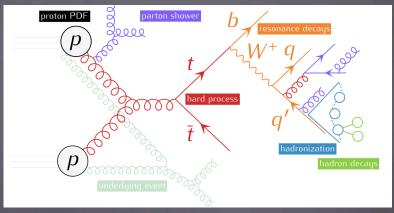
Top quark: the known heaviest elementary particle ($\sim 170 \text{ GeV}$)


- mass at the EW breaking scale, large yukawa coupling with Higgs, short life time, ...
- $t\bar{t}$ production mechanism at LHC
 - LO: $gg \to t\bar{t}$ (main, e.g. 90% when \sqrt{s} =13 TeV) and $q\bar{q} \to t\bar{t}$ (different parton density functions (PDF) $f(x, Q^2)_p^{q/g}$: probability of parton q/g with energy fraction x of the proton energy)
 - current best $\sigma_{\text{total}} = \sigma(pp \to t\bar{t})$ of $\sqrt{s} = 13$ TeV: 832^{+46}_{-51} pb @NNLO + NNLL (soft gluon) in QCD (PRL110(2013)252004)

$$g \xrightarrow{g} 000000 \stackrel{t}{\bar{t}} g \xrightarrow{g} 000000 \stackrel{t}{\bar{t}} g \xrightarrow{g} 000000 \stackrel{t}{\bar{t}} g \xrightarrow{q} 000000 \stackrel{t}{\bar{t}}$$

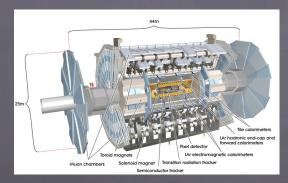
$t\overline{t}$ Decay

 $t \to W^+ b$ almost all cases


- decay in 5×10^{-25} s, before hadronization (10^{-23})
- $W \to \ell \nu (\ell = e/\nu/\tau) \sim 30\%$ cases, $W \to q \bar{q'} \sim 70\%$ cases

 $t\bar{t}$ decay categorized according to number of leptons

- "dilepton" channel: 2 leptons with opposite sign (OS) of charge, 2 neutrinos, b and \bar{b} quarks
- "single lepton" channel: 1 lepton, 1 neutrino, a pair of light quarks, b and \bar{b} quarks
- "all hadronic" channel: two pairs of light quarks, b and \overline{b} quarks
- more lepton \rightarrow smaller cross-section but cleaner signal


Not Just $t\overline{t}$

- underlying events: beam remnant, multiple parton interaction
- parton shower (PS): initial/final state QCD radiation
- PS down to hadron scale \rightarrow hadronization and hadron decays
- Pile-up: (soft) events from other pp collision

ATLAS Detector

$t\bar{t}$ final state: leptons (e/ μ), neutrinos, hadrons

Electron/Photon

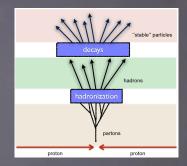
* Inner detector track(s) + Electromagnetic calorimeter energy deposit

Muon

* Inner detector track + Muon spectrometer track Hadron

* Inner detector track + Hadronic calorimeter energy deposit

Neutrinos


* cannot measure directly \to infer from momentum imbalance, but p_z (beam direction) unknown \to called missing E_T (MET)

* cylindrical system: azimuthal ϕ (0~ 2π), $\eta = \ln \tan \frac{\theta}{2}$ (-5~5/1~179 degrees)

Jet

Proxy of QCD parton

- a QCD parton \rightarrow a bunch of collimated stable particles
- collect these stable particles \rightarrow jet
- "reverse-engineer" of the original parton kinematics

Jet algorithm: e.g. anti- k_T

- infrared/collinear radiation safe, robust against underlying events and pile-up
- circular cone shape: $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$, in (η, ϕ) plane
- Identify *b*-quark/*b*-jet: *b*-tagging
 - e.g. displaced decay vertex (wrt hard event vertex): $b\-hadron$ flies $\sim\!1~\mathrm{mm}$ before decays

Typical Selection

Object kinematics selection

- high pT (e.g. pT >25 GeV) and central $|\eta|$ (e.g. $|\eta|<2.5)$
- remove electron/photon in crack region between barrel/endcap

Lepton/photon isolation

- additional E/p in a cone of $\Delta R = X$ around the object
- small (large) isolation for prompt (non-prompt/jet-fake) lepton/photon

Primary vertex (PV) selection

- formed by fitting tracks, choose the one with max $\sum_{trk} p_T^2$ Lepton impact parameter selection

- track close to PV in beam direction and transverse plane

Pile-up jet suppression

- pile-up jet has more tracks NOT from PV

Typical Selection

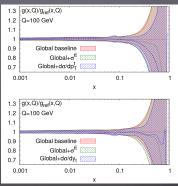
Event selection

- single lepton channel: 1 lepton, MET, ≥ 4 jets, ≥ 1 b-jet
- dilepton channel: 2 leptons with OS, MET, \geq 2 jets, \geq 1 b-jet
- use \geq instead of "==" to account for additional jet from QCD radiation and inefficiency of $b\text{-}\mathrm{tagging}$

Background suppression

- single top, $W/Z{+\rm jets},$ diboson (WW/WZ/ZZ), non-prompt and fake leptons
- single lepton channel: transverse W mass $m_T^W =$

 $\sqrt{2p_T^\ell p_T^\nu}(1 - \cos \Delta \phi > 30 \text{ GeV})$, for events with fake lepton or MET or not containing W intermediate state


- dilepton channel: lepton pair invariant mass $m_{\ell\ell} > 10$ GeV and $\not\in [85,95]$ GeV, for low-mass Drell-Yan (DY) and Z+jets events

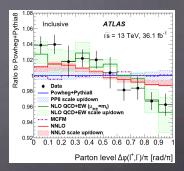
$t\bar{t}$ Analyses

Inclusive and differential $t\bar{t}$ cross-sections

- challenge pQCD calculation and check MC generators (e.g. too hard MC $t\bar{t}$ pT, arxiv:1908.07305)
- sensitivity to large-x gluon PDF (JHEP04(2017)044), m_t
- background to rare SM process / BSM search

$t\overline{t}$ Analyses

Top quark mass (m_t) : fit to observables sensitive to m_t


- key SM parameter, vacuum stability, mass definition

 $t\bar{t}$ charge asymmetry: tiny effect, sensitive to BSM

- SM: top closer to beam direction than anti-top in average

$t\bar{t}$ spin correlation (Arxiv:1903.07570)

- top life time much smaller than spin decorrelation time
- spin correlation propagated to decay products
- deviation from NNLO prediction in ATLAS

$t\overline{t}$ Analyses

Flavor-changing neutral current (FCNC)

- $t \to Xq$, where $X = H/Z/g/\gamma$ and q a light up-type quark $t\bar{t}$ associated production with X

- $X = H/Z/\gamma$, top neutral couplings, $t\bar{t}\gamma$ (in this talk)

- X = (heavy-flavor) jets (in this talk): test pQCD and tune MC, important background process

 $t\bar{t}$ as background (in this talk)

- $H \rightarrow WW$ and WW measurements

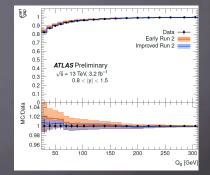
More not covered here

- jet substructure, top polarisation, single-top production, ...

$t\overline{t}$ + Jets in $e\mu$ Channel

Introduction

 $\alpha_{S}\sim 0.1:$ normal to have QCD radiation, i.e. additional jets, in $t\bar{t}$ production/decay


- resolved jet with hard p_T , otherwise not easy to measure/predict

Why interested in $t\bar{t} + jets$?

- testing pQCD at top mass scale
- test/tune MC generator (ATL-PHYS-PUB-2018-009)
- background to other analyses

Why in $e\mu$ channel?

- clean signal sample with tiny background

Predictions & Experiments

Theoretical predictions

- $t\overline{t}$ + 1 jet:
- NLO prediction: PRL98(2007)262002, NPB840(2010)129-159
- interfaced to PS: JHEP04(2015)114
- non-resonance and off-shell: PRL116(2016)052003
- $t\overline{t}$ + 2 jets:
- NLO prediction: PRL104(2010)162002
- implementation in PS: PLB06(2015)060

Experimental measurements (ATLAS)

- 7 TeV dilepton: EPJC72(2012)2043
- 7 TeV single lepton: JHEP01(2015)020
- 8 TeV dilepton of emu: JHEP09(2016)074
- 13 TeV dilepton of emu (partial dataset): EPJC77(2017)220
- 13 TeV single lepton (partial dataset): JHEP10(2018)159

Analysis Overview

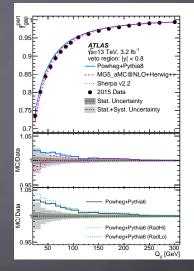
Selection: 1 pair of OS e and μ , ≥ 2 *b*-jets

- high signal $(t\bar{t})$ purity: > 95%, Wt (MC) and fake lepton (data-driven) background
- additional jets are measured: jet not corresponding to the two **b**-jets from top decay

Fake lepton background

- varied selection: SS e and $\mu \rightarrow$ fake lepton control region Pile-up additional jet background:

- 1. vary pile-up simulation
- 2. revert pile-up suppression \rightarrow pile-up jet control region


Unfolding: iterative Bayesian

- from observed distribution to truth distribution: strip off detector/pile-up effects

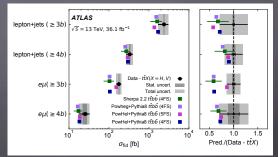
Observables

Gap fraction (here), p_T spectrum, jet multiplicity

- fraction of events with 0 additional jet of $p_T > X$ and $|rapidity| \in [Y,Z]$ over all events
- sensitive to 1st real emission by matrix element (pQCD) and parton shower (non-pQCD) and their matching
- upgraded version: allow additional jets, but p_T sum of additional jets < X, sensitive to all emission
- analysis ongoing (results here from last published analysis)

Heavy-flavor Additional Jet

Why heavy-flavor jet:


- multi-scale problem: p_T of jet and b mass: hard to predict/model, see Frank Siegert's talk in TOP2019

Feature on top of $t\bar{t}$ + jets measurement

- measure relative fraction of $b/c/{\rm light}{-}{\rm flavor}$ jet out of all additional jets by fitting $b{-}{\rm tagging}$ score

Observed heavy flavor more than MC predictions

- JHEP04(2019)046
- systematics: b-tagging and fit of its score, $t\bar{t}$ modelling

Issues of Previous Analyses

Jet order swapping

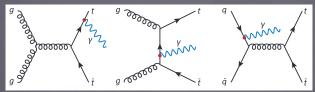
- an observed subleading jet could be the leading truth jet due to resolution effect (20% case)
- previously discarded, now enter the unfolding

Optimization of unfolding algorithm

- comparison with other unfolding methods: e.g. TUnfold New observables
 - e.g. recoil of the leading additional jet wr
t $t\bar{t}b\bar{b}$ system

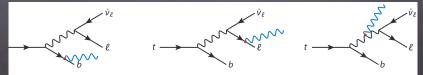
Large systematics

- jet (to PFlow) and *b*-tagging (to new tagger) performance expected to be improved
- new $t\bar{t}$ modelling benchmarks


$t\bar{t}$ + Photon

JHEP11(2017)086, EPJC79(2019)382, ATLAS-CONF-2019-042 ATL-PHYS-PUB-2018-049

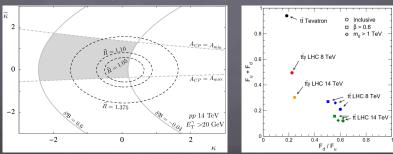
$t\bar{t}\gamma$ Process @LHC


Radiative production

- a photon radiation on top of $t\bar{t}$ production: e.g. top quark, initial charged parton

Radiative decay

- photon radiation during top decay: e.g. W boson, final state charged particle


Why Measuring $t\bar{t}\gamma$

Probe the structure of $t\gamma$ coupling

- electric ($\tilde{\kappa}$) and magnetic (κ) dipole moments: PRD71(2005)054013 PRD87(2013)074015 (by $t\bar{t}\gamma/t\bar{t}$ ratio),
- EFT dimension-6 operators O_{uW}^{33} , $O_{uB\phi}^{33}$: NPB812(2009)181

Enhanced $t\bar{t}$ charge asymmetry in $t\bar{t}\gamma$ process

- JHEP04(2014)188, EPJC79(2019)189

Predictions & Experiments

Theoretical predictions

- LO calculation: PRD64(2001)094019, PRD71(2005)054013
- NLO QCD: PRD80(2009)014022, PRD83(2011)074013
- NLO EW: PLB766(2017)102
- $e\nu\mu\nu b\bar{b}\gamma$ in NLO QCD: JHEP10(2018)158

Experimental measurements

- evidence: CDF PRD84(2011)031104
- observation: ATLAS 7 TeV PRD91(2015)072007,
- measurements: CMS 8 TeV JHEP10(2017)006, ATLAS 8 TeV JHEP11(2017)086, ATLAS 13 TeV (36 fb⁻¹) EPJC79(2019)382, ATLAS 13 TeV (139 fb⁻¹) $e\mu$ channel ATLAS-CONF-2019-042

Analysis Overview

A lot in common with typical $t\bar{t}$ analysis

- similar event selection and background sources: e.g. W+jets $(W\gamma$ +jets)to $t\bar{t}$ $(t\bar{t}\gamma)$ analysis in single lepton channel

Prompt photon v.s. fake photon or non-prompt photon

- prompt photon directly from ME: e.g. $t\bar{t}\gamma$
- $j \rightarrow \gamma$ fake: jet misidentified as photon; photon from jet fragmentation or hadron decay (non-prompt photon)
- $e \rightarrow \gamma$ fake: electron misidentified as photon (missing track, failed track/calo. matching, fake photon-conversion vertex); photon from hard electron brem. (non-prompt photon)

Analysis Overview

No total $t\bar{t}\gamma$ cross-section

- soft/collinear photon radiation \rightarrow divergence \rightarrow only fiducial cross-section is well defined

Typical phase space

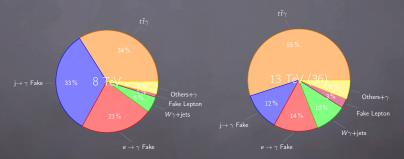
- lower bound to: photon p_T , ΔR (photon, charged final state particle), invariant mass (photon, charged final state particle)
- photon isolation: upper bound of p_T sum of nearby particles, Frixione isolation (PLB429(1998)369-374)

MC simulation

- full simulation (currently employed, only in LO): radiative production + radiative decay + their interference
- normalize to NLO theory calculation

Event Selection

 $t\bar{t}$ leptonic decay channels were analyzed


- event selection factorized into $t\bar{t}$ and photon (shown here) parts
- suppress fake photon and photon from non- $t\gamma$ vertex
- fiducial cross-section defined in similarly selected phase space at particle level (but removing Z-mass and MET cuts)

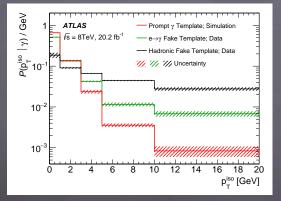
	8 TeV	13 TeV (36)	13 TeV (139)
Channel	single lepton	all leptonic	dilepton
Photon p_T cut	$15 {\rm GeV}$	20 GeV	
$e \rightarrow \gamma$ in single electron	$ m(e,\gamma)-m_Z >5~{ m GeV}$		
$Z\gamma$ in dilepton		$ \textit{m}(\ell,\ell,\gamma)-\textit{m}_{Z} >5~{ m GeV}$	
Min. $\Delta R(\gamma, j)$	0.5	0.4	
Min. $\Delta R(\gamma, \ell)$	0.7	1.0	0.4

Event Yields

Single lepton channel: ~ 3000 and ~ 12000 events selected for 8 TeV and 13 TeV (36) analyses

- large statistics, complicated backgrounds
- isolation not applied but fitted in 8 TeV \rightarrow much larger j $\rightarrow\gamma$

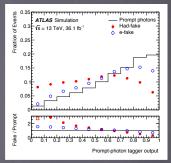
Event Yields

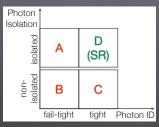

Dilepton channel: ~ 900 and ~3000 events selected for 13 TeV (36) and 13 TeV (139, $e\mu$) analyses

- smaller statistics, higher signal purity
- changed signal definition at 13 TeV (139, $e\mu)$

$j \rightarrow \gamma$ Background (8 TeV)

Source: mainly from $t\bar{t}$ + jets, then any jet $\rightarrow \gamma$


Isolation template method


- $j \rightarrow \gamma$ template from multi-jet data
- $e \rightarrow \gamma$ template from data-driven method
- signal template from MC

$j \rightarrow \gamma$ Background (13 TeV 36)

Prompt photon tagger (PPT)

- neural network (NN) trained with characteristic quantities of shower shape on calo.: e.g. lateral spread of energy deposit
- shape fed into another signal NN

Normalization by "ABCD" method

- reverse shower-shape and/or isolation cuts to construct 3 j $\rightarrow \gamma$ control regions
- $D_{est.} = \frac{A_{est.}}{B_{est.}} \times C_{est.}$
- non-closure corrected by MC

$e \rightarrow \gamma$ Background

Mainly for single lepton channel and from $t\bar{t} \rightarrow e\ell$ and $Z \rightarrow ee$ Tag & probe method utilizing $Z \rightarrow ee$ decay

- tag: a well identified electron triggered the event
- probe: an electron or photon object back-to-back w.r.t the tag, and invariant mass of (tag,probe) close to Z peak
- fake rate: probe-photon / probe-electron
- non-Z background in one template: fit m(T,P): double-sided Crystal-ball (Z) + polynomial (non-Z)

 $8 \, {\rm TeV}$

- apply fake rate to another CR: replacing SR photon requirement by electron requirement
- 13 TeV (36): more decomposed/detailed study
 - probe-photon composition studied with $\mathrm{MC} \to Z\gamma$ subtracted
 - fake rate data/MC: 0.8 \sim 2.1, large correction in central eta region

$V\gamma$ +jets and Fake Lepton

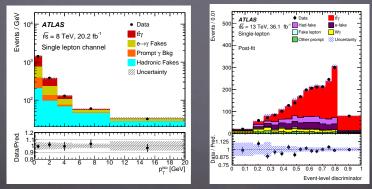
 $V\gamma$ +jets (V = W/Z)

- $W\gamma+{\rm jets}$ in single lepton channel: control region in 8 TeV while floated in 13 TeV (36)
- $Z\gamma$ from MC but checked in dedicated validation regions (only 13TeV 36)

Fake lepton

- source: lepton from heavy flavor decay in jet, jet misidentification
- single lepton channel: select loosely and tightly identified leptons

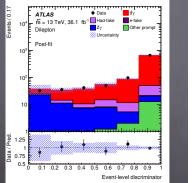
 $N^{
m loose} = N^{
m loose}_{
m real} + N^{
m loose}_{
m fake}$

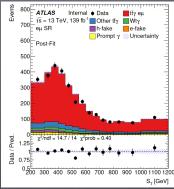

 $N^{\mathrm{tight}} = N^{\mathrm{tight}}_{\mathrm{real}} + N^{\mathrm{tight}}_{\mathrm{fake}} = \epsilon_{\mathrm{real}} N^{\mathrm{loose}}_{\mathrm{real}} + \epsilon_{\mathrm{fake}} N^{\mathrm{loose}}_{\mathrm{fake}}$

- with measured ϵ_{real} and ϵ_{fake} , solve equation for $N_{\text{fake}}^{\text{tight}}$
- 8 TeV with assumed 50% systematics \rightarrow 13 TeV with dedicated sys. study
- dilepton channel: one true + one fake, negligible, checking same-charge lepton-pair events

Fit in Single Lepton Channel

 $8~{\rm TeV}$ fit isolation, $13~{\rm TeV}$ fit NN trained with

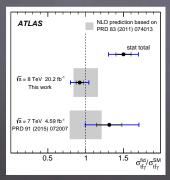

- jet multiplicity, jet p_T s, *b*-tagging scores, MET
- PPT, photon-lepton invariant mass

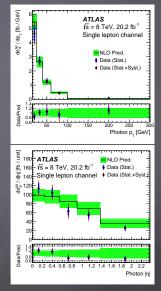


Fit in Dilepton Channel

13 TeV (139) fit S_{τ} , 13 TeV (36) fit on NN trained with Extract fiducial cross-section by fitting NN trained with

- jet multiplicity, jet $p_T {\rm s}, \; b{\rm -tagging \; scores}, \; {\rm MET}$
- dilepton invariant mass

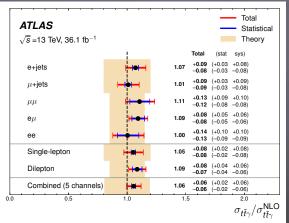



Cross-sections (8 TeV)

Measured v.s. NLO theory (PRD83(2011)074013)

- $\sigma_{\rm fid}^{\rm SL} = 139 \pm 7 ({\rm stat.}) \pm 17 ({\rm sys.})$ fb
- systematics: fake photon, JES, $W\gamma$

Differential cross section measured via bin-by-bin unfolding



Fiducial Crosssection (13 TeV)

Measured (36 fb^{-1}) v.s. NLO theory (PRD83(2011)074013)

- $\sigma_{\rm fid}^{\rm SL} = 521 \pm 9(\text{stat.}) \pm 41(\text{sys.}) \text{ fb}$
- $\sigma_{\rm fid}^{\rm DL} = 69 \pm 3(\text{stat.}) \pm 4(\text{sys.})$ fb
- systematics: JES, $t\bar{t}\gamma/t\bar{t}$ modelling, Pileup, Lumi., PPT in SL

Fiducial Crosssection (13 TeV)

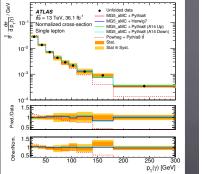
139 fb⁻¹ $e\mu$ v.s. 36 fb⁻¹ $e\mu$

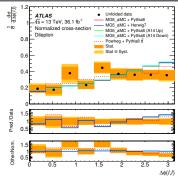
- compare directly with $e\nu\mu\nu b\bar{b}\gamma$ NLO calculation in JHEP10(2018)158: 1. excluded signal with a e/μ from prompt τ decay; 2. unfold to parton level instead of particle level

- $t\bar{t}\gamma$ in non- $e\mu$ channels and $Wt\gamma$ as dominant backgrounds

Fiducial region: strictly $e\mu$, not including τ lepton decay

- similar p_T/η cuts on ${\rm e}/\mu/\gamma/b/\bar{b}\text{-jets}$ as before
- $\begin{array}{l} \ \Delta R(\ell,\gamma), \ \Delta R(e,\mu), \ \Delta R(\ell,b/\bar{b}\text{-jets}), \ \Delta R(b\text{-jet},\bar{b}\text{-jet}) > 0.4 \\ \text{Fiducial cross-section} \end{array}$
 - measured: $44.2 \pm 0.9(\text{stat})^{+2.6}_{-2.4}(\text{sys})$ fb
 - theory: $39.50^{+0.56}_{-2.18}$ (scale) $^{+1.04}_{-1.18}$ (PDF) fb
 - dominant systematics: MC modelling of $t\bar{t}\gamma$ and $Wt\gamma$

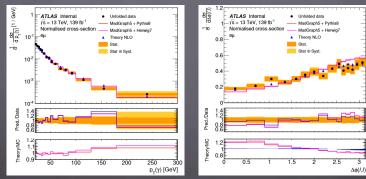

Notes


- theory includes $Wt\gamma$ and non-resonant, while measurement is $t\bar{t}\gamma$ only

Differential Cross-section

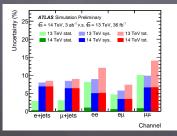
13 TeV 36 fb⁻¹: unfold pre-fit observables with Iterative Bayesian method

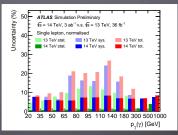
- photon p_T and $|\eta|$, min. $\Delta R(\ell, \gamma)$, dilepton $\Delta \phi$ and $\Delta \eta$
- compared to signal MC + its PS/ISR variations
- $t\bar{t}\gamma$ by $t\bar{t}$ + parton shower (PS) has softer ρ_T



Differential Cross-section

13 TeV 139 fb⁻¹: unfold pre-fit observables with Iterative Bayesian method


- photon p_T and $|\eta|$, min. $\Delta R(\ell, \gamma)$, dilepton $\Delta \phi$ and $\Delta \eta$
- compared to signal MC + its PS variations and NLO theory including non-resonant/off-shell



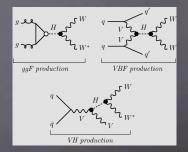
HL-LHC Projection

HL-LHC: 14 TeV 3000 fb^{-1}

- projected from 13 TeV 36 fb⁻¹ analysis
- same experimental and half theoretical uncertainties
- also the first $t\bar{t}\gamma$ EFT interpretation: limit an order of magnitude lower than current limit

$t\bar{t}$ as Background

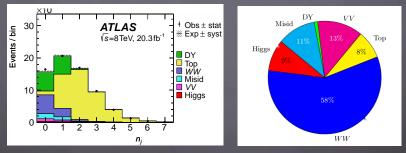
PRD92(2015)012006, PLB763(2016)114


HWW Analysis

Signal: $H \to WW^* \to \ell \nu \ell \nu$

- 2 OS leptons and MET, 2 fwd jets (if VBF)
- observe Higgs, probe its properties: spin, off-shell coupling

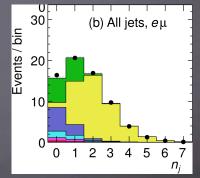
Sub-channels and backgrounds


- $0/1/\ge 2j$, same/different flavor leptons, ggF/VBF enriched
- significance dominated by 0j DF leptons
- backgrounds: WW, top, non-prompt and fake leptons, diboson, DY

Top Background in 0J $e\mu$

Small background but comparable as signal \rightarrow its precision limit the lower limit of signal measurement precision

- estimation: Jet Veto Survival Probability (JVSP) method
- MC based sys of >20% v.s. JVSP sys of $\sim8\%$


Definition of JVSP

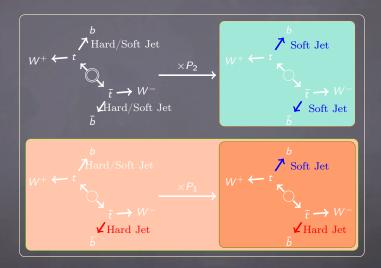
$JVSP \equiv Jet Veto Survival Probability$

- Probability of top quark background surviving jet veto
- Jet veto: veto event which has any jet with $p_T>25~{\rm GeV}$

 $N_{\rm top,0j} = N_{\rm top,inc.} \times \rm JVSP$

- $N_{\text{top,inc.}}$, jet inclusive top quark event, easy to control
- $N_{\text{top},0j}$, 0 jet top quark event, quantity of interest, sensitive to theoretical and experimental errors because of JVSP

Formulation of JVSP

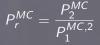

Leading Order (LO) picture

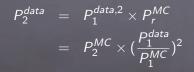
$\text{JVSP} \equiv P_2 = P_{b1} \times P_{b2} \equiv P_1^2$

- For convenience, JVSP is denoted as P_2
- P_{b1} and P_{b2} are the probabilities of the 1st and 2nd $b\mbox{-jet}$ to have $p_T < 25~{\rm GeV}$
- Assume no correlation (2% precision) between P_{b1} and $P_{b2} \to$ they are denoted as P_1
- ${\cal P}_1$ can be measured with data
 - Denote jet with p_T below/above 25 GeV as soft/hard jet
 - 1 hard jet (also *b*-tagged) as tag of top quark event, the other jet as probe

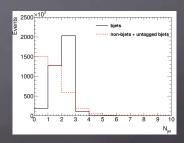
$$P_1 = rac{N_{1hard+1soft}}{N_{\geq 1hard}}$$

Illustration of P_1/P_2




Beyond LO of JVSP

At beyond LO, QCD radiation modifies JVSP (P_2)


 $P_2 = P_1^2 \times P_r$

- P_r : probability of the rest jets to be soft, predicted by MC

Extend P_1 definition to absorb P_r to reduce residual dependency on MC

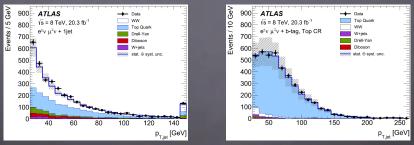
Systematics of JVSP

Top quark modelling systematics (of $\frac{P_2^{MC}}{P_1^{MC,2}}$)

- 3.3% parton shower (PS) uncertainty: fHerwig v.s. Pythia6
- 1.2% matrix element (ME) uncertainty: POWHEG v.s. MC@NLO
- 1.6% PDF uncertainty: CT10 v.s. 1) CT10 eigenvector error sets 2) MSTW
 3) NNPDF
- 0.7% QCD scale uncertainty, $t\bar{t}/Wt$ interference uncertainty, ...

Other systematics

- 4.6% experimental uncertainty, dominated by jet energy scale/resolution (JES/JER)
- 1.5% non-top event subtraction uncertainty

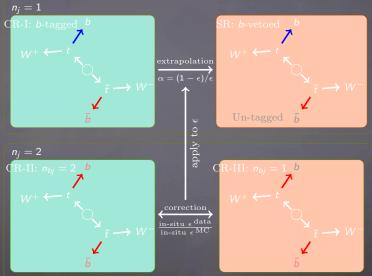

Other checks

- Varying 1) definition of the probing jet 2) exponent of 2, ...
- Results are stable against these checks

WW+1j Measurement

Test SM

- pQCD calculation available for NLO+NNLL (by the time)
- 1.4σ tension of obs./pred. total xsec. (from 0 jet fiducial)
- top background largest even after $b\text{-}\mathrm{veto}$
- "in-situ" method for top background: 5% sys


"In-situ" Method

Measure the b-tagging efficiencies in the situation

$$egin{aligned} \mathcal{N}_{ ext{after}}^{ ext{bveto}} &=& \mathcal{N}_{ ext{before}}^{ ext{bveto}} imes \epsilon_{ ext{bveto}} \ &=& rac{\mathcal{N}_{ ext{after}}^{ ext{btag}}}{\epsilon_{ ext{btag}}} imes (1-\epsilon_{ ext{btag}}), \end{aligned}$$

- reverse *b*-veto to form top control region: $N_{\text{after}}^{\text{btag}}$
- measure $\epsilon_{\rm btag}$ from 2b/2 jets and 1b/2 jets regions
- $\epsilon_{\rm btag}$ measured in 2 jets region \rightarrow bias of applying to 1 jet region considered

Illustration of "In-situ"

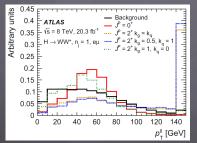
Summary

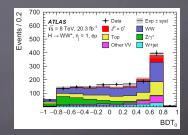
Overview of active top-quark related topics

- inclusive/fiducial/differential cross-sections
- top properties: charge, mass, spin
- $t\bar{t}$ event topology: charge asymmetry

- ...

Detailed presentation of


- ongoing: $t\bar{t}$ + (heavy-flavor) jet, important for almost all top-related analyses, plan to improve precision by addressing issues not considered in previous round
- $t\bar{t}\gamma$: from 8 TeV to 13 TeV full data set, close communication with theorists, far more advanced than CMS, precision from 28% at observation time down to 6%
- $t\bar{t}$ background in HWW/WW analyses: phase space of soft $b\mbox{-jet}$

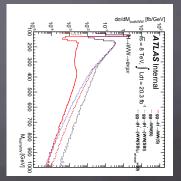

Backup

BDT for Higgs Spin in 1 Jet Channel

Four inputs: $p_T^{\ell\ell}$, $m_{\ell\ell}$, $\Delta \phi_{\ell\ell}$, m_T

- 2-D BDTs: spin-0 v.s. backgrounds and spin-2 v.s. backgrounds
- 1 jet channel: non-universal coupling spin-2 models,

Jet Inclusive Off-shell Higgs Signal

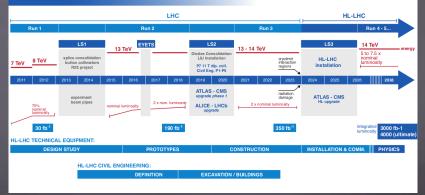

Enhanced cross-section

- phase space opened at 2^*W mass
- sizable negative interference with non-resonant $W\!W$

Higgs decay width

- Combine on-shell and off-shell measurements

$$\begin{split} \sigma_{\rm on} \propto \frac{\kappa^4}{\Gamma} & \& & \sigma_{\rm off} \propto \kappa^4 \\ \Rightarrow \Gamma \propto \frac{\sigma_{\rm off}}{\sigma_{\rm on}} \end{split}$$



Reference

top MC modelling: https://indico.cern.ch/event/792576/contributions/3405534/

LHC Schedule

LHC / HL-LHC Plan

ATL-PHYS-INT-2014-037

In $n_i = 0$ Channel

Method	JVSP	Template	Extrapolation	In-situ
Methodology	$egin{aligned} N_{ ext{top}}^{ ext{inc.}} imes ext{JVSP}_{ ext{SR}}^{ ext{MC}} imes f_{ ext{corr}} \ f_{ ext{corr}} = (rac{ ext{JVSP}_{ ext{CR}}^{ ext{data}}}{ ext{JVSP}_{ ext{CR}}^{ ext{data}}})^2 \end{aligned}$	$\begin{array}{l} {\rm CR} \rightarrow {\cal T}_{n_j}(f_{\rm norm}^{\rm non-top}) \\ \\ {\rm fit \ to \ } n_j{\rm -inc \ SR} \end{array}$	$\alpha = \frac{1}{\epsilon_{\rm SR}^{\rm MC}} \leftarrow $	$\epsilon_{\mathrm{SR}}^{\mathrm{MC}}$ corrected with $\frac{\epsilon_{\mathrm{CR}}^{\mathrm{data}}}{\epsilon_{\mathrm{CR}}^{\mathrm{mc}}}$
Stat.	2.2	7.3	6.8	7.3
Exp.	4.6 (JES/JER)	17.5 (mis- b -tag)	13.6 (mis- <i>b</i> -tag)	9.0 (mis-b-tag)
Theo.	3.8 (PS)	4.4 (ME)	3.6 (ME)	1.9 (PDF)
Non-top	1.5	2.3	1.8	2.0
Total	6.5	19.6	15.7	11.9

- uncertainties in the table are evaluated at jet-veto or b-veto cut stage, slightly different from coupling paper
- JVSP has least stat. error; others much larger due to they use the small top CR: $n_j=0\&n_{bj[{\bf 20},{\bf 25}]}\neq 0$
- JVSP not sensitive to b-tag, while others do
- In-situ has least theo. uncert.: large cancellation of systematics between ϵ_{SB}^{MC} and ϵ_{CB}^{MC}
- Non-top includes WW / Z+jets with assumed 6% / 5% uncertainty
- Overall, JVSP suffers from much smaller uncertainty