First measurement of $\chi_{cJ} \rightarrow \Sigma^0 \overline{p} K^+ + c. c. (J=0, 1, 2)$ decays

Shan Gu^{a,b}, Wencheng Yan^c, Xin Shi^b, Chengping Shen^d

^aBeihang University ^bInstitute of High Energy Physics ^cZhengzhou University ^dFudan University

>Introduction

- ≻Data Sets
- **Event Selection**
- **≻**Background analysis
- ➤Systematic uncertainties

≻Summary

Introduction

- >Obtaining more experimental data on exclusive decays of χ_{cJ} state is important for a better understanding of their nature and decay mechanisms, as well as for testing QCD – based calculations.
- Searching for new excited baryon states is still motivated for us to enrich the relatively poor knowledge of the baryon spectrum. We can search for excited baryon states via $\chi_{cI} \rightarrow \Sigma^0 \overline{p} K^+$.
- > The world's largest statistics of $\psi(3686)$ events collected with the BESIII detector provides a unique opportunity for a detailed study of χ_{cI} decays.
- > This analysis report the first measurements of the branching fractions of $\chi_{cJ} \rightarrow \Sigma^0 \overline{p} K^+ + c. c.$ decays via the E1 radiative transition $\psi(3686) \rightarrow \gamma \chi_{cJ}$.

➢Boss Version: 664p03;

➢ Data: 448.1× 10⁶(2009+2012)ψ(3686);

>Inclusive MC: $506 \times 10^6 \psi(3686)$;

Exclusive MC: 2×10^5 events for every decay mode.

Event topology

$$\psi(3686) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \Sigma^0 \overline{p} K^+ + c. c.$$

Final states of signal: γγppK⁺π[−] or γγppK[−]π⁺
In the next slides, the charge-conjugated channel is included in default.

Charged tracks

- |Rxy |<1cm and |Rz|<10cm for the free ant-proton and K⁺;
- |cosθ|<0.93;
- Ngood =4 & ΣQ =0;
- ≻Neutral tracks
- Default;
- Nγ≥2;

≻PID

- PID for proton, pion and kaon;
- N(p)=N(\bar{p})=N(k^+)=N(π^-)

≻A is reconstructed by Second VertexFit

 $L/\sigma_L > 0$ >4C kinematic fit

- With the smallest χ^2
- Obtain $\gamma \gamma p \bar{p} \pi^- K^+$ > Σ^0 :

$$\chi^{2} = \left(\frac{M(\gamma_{1}\Lambda) - M(\Sigma^{0})}{\sigma_{\Sigma^{0}}}\right)^{2}$$

Suppress background with γ :
 $\chi^{2}(\gamma\gamma p\bar{p}\pi^{-}k^{+}) < \chi^{2}(\gamma p\bar{p}\pi^{-}k^{+})$

7

 $|M_{\gamma\Lambda} - m_{\Sigma^0}| < 0.01 \text{GeV}$

 $\left| M_{p\pi^{-}} - m_{\Lambda} \right| < 0.004 \text{GeV}$

Total events

10

Dalitz plot distributions of the intermediate states

The invariant mass spectra of the intermediate states in χ_{c0} mass regions([3.36, 3.46] GeV/c²)

<i>Ξ</i> (1820) MASS		

 $1823\pm5~{
m MeV}$

 $\Sigma(2070)$

 $\Sigma(2080)$

 $5/2^{+}$

 $3/2^{+}$

12

Check for the charge-conjugated decay

The invariant mass spectra of the intermediate states in χ_{c1} mass regions([3.48, 3.54] GeV/c²)

14

The invariant mass spectra of the intermediate states in χ_{c2} mass regions([3.54, 3.58] GeV/c²)

Background study

Table 1: The information of the survived events from the $\psi(3686)$ inclusive MC sample in χ_{c0} region. nEvt means the number of the event from each decay chain, sum means the total number of the events in each category.

component	decay chain	final states	nEvt	sum
	$\psi' \to \gamma \chi_{c0}, \chi_{c0} \to p K^- \bar{\Sigma}^0, \bar{\Sigma}^0 \to \gamma \bar{\Lambda}, \bar{\Lambda} \to \bar{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma\gamma p$	36	
Signal	$\psi' ightarrow \gamma \chi_{c0}, \chi_{c0} ightarrow \Sigma^0 K^+ ar p, \Sigma^0 ightarrow \gamma \Lambda, \Lambda ightarrow p \pi^-$	$\pi^- \bar{p} \gamma \gamma p K^+$	31	67
	$\psi' ightarrow K^{*-} p \bar{\Lambda}, K^{*-} ightarrow K^- \pi^0, \bar{\Lambda} ightarrow ar{p} \pi^+$	$\bar{p}K^{-}\pi^{0}\pi^{+}p$	19	
	$\psi' ightarrow \Lambda K^{*+} \bar{p}, \Lambda ightarrow p \pi^-, K^{*+} ightarrow K^+ \pi^0$	$\pi^- \bar{p} \pi^0 p K^+$	11	
	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to K^{*+} \Lambda \bar{p}, K^{*+} \to K^+ \pi^0, \Lambda \to p \pi^-$	$\pi^- \bar{p} \pi^0 \gamma p K^+$	6	
K^{*-}	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to K^{*-} \bar{\Lambda} p, K^{*-} \to K^{-} \pi^{0}, \bar{\Lambda} \to \bar{p} \pi^{+}$	$\bar{p}K^{-}\pi^{0}\pi^{+}\gamma p$	5	46
	$\psi' ightarrow ar{p} \Sigma^0 K^{*+}, \Sigma^0 ightarrow \gamma \Lambda, K^{*+} ightarrow K^+ \pi^0, \Lambda ightarrow p \pi^-$	$\pi^- \bar{p} \pi^0 \gamma p K^+$	3	
	$\psi' ightarrow \gamma \chi_{c2}, \chi_{c2} ightarrow K^{*-} ar{\Lambda} p, K^{*-} ightarrow K^{-} \gamma, ar{\Lambda} ightarrow ar{p} \pi^{+}$	$\bar{p}K^{-}\pi^{+}\gamma\gamma p$	1	
	$\psi' ightarrow \gamma \chi_{c0}, \chi_{c0} ightarrow p ar{\Lambda} K^{*-}, ar{\Lambda} ightarrow ar{p} \pi^+, K^{*-} ightarrow K^- \pi^0$	$\bar{p}K^{-}\pi^{0}\pi^{+}\gamma p$	1	
	$\psi' ightarrow \gamma \chi_{c0}, \chi_{c0} ightarrow K^+ ar{p} \Lambda, \Lambda ightarrow p \pi^-$	$\pi^- \bar{p} \gamma p K^+$	5	
peakingbkg	$\psi' ightarrow \gamma \chi_{c0}, \chi_{c0} ightarrow p ar{\Lambda} K^-, ar{\Lambda} ightarrow ar{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma p$	2	8
	$\psi' ightarrow \gamma \chi_{c0}, \chi_{c0} ightarrow K^+ ar{p} \Lambda \gamma_{FSR}, \Lambda ightarrow p \pi^-$	$\pi^- \bar{p} \gamma p K^+$	1	
flatbkg	$\psi' \to \Lambda K^+ \Delta^+, \Lambda \to p \pi^-, \Delta^+ \to \bar{p} \pi^0$	$\pi^- \bar{p} \pi^0 p K^+$	1	1

Table 2: The information of the survived events from the $\psi(3686)$ inclusive MC sample in χ_{c1} region. nEvt and sum stand for the same meaning as Table 1.

component	decay chain	final states	nEvt	sum
	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \Sigma^0 K^+ \bar{p}, \Sigma^0 \to \gamma \Lambda, \Lambda \to p \pi^-$	$\pi^- \bar{p} \gamma \gamma p K^+$	33	59
Signal	$\psi' ightarrow \gamma \chi_{c1}, \chi_{c1} ightarrow p K^- \overline{\Sigma}^0, \overline{\Sigma}^0 ightarrow \gamma \overline{\Lambda}, \overline{\Lambda} ightarrow \overline{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma\gamma p$	25	30
<i>K</i> *-	$\psi' ightarrow pK^{*-}\bar{\Lambda}, K^{*-} ightarrow K^{-}\pi^{0}, \bar{\Lambda} ightarrow ar{p}\pi^{+}$	$\bar{p}K^{-}\pi^{0}\pi^{+}p$	14	
	$\psi' ightarrow ar{p} K^{*+} \Lambda, K^{*+} ightarrow K^+ \pi^0, \Lambda ightarrow p \pi^-$	$\pi^- \bar{p} \pi^0 p K^+$	10	27
	$\psi' \to K^{*+} \bar{p} \Sigma^0, K^{*+} \to K^+ \pi^0, \Sigma^0 \to \gamma \Lambda, \Lambda \to p \pi^-$	$\pi^- ar{p} \pi^0 \gamma p K^+$	2	27
	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to \Lambda \bar{p} K^{*+}, \Lambda \to p \pi^-, K^{*+} \to K^+ \gamma$	$\pi^- \bar{p} \gamma \gamma p K^+$	1	
peakingbkg	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to K^- p \bar{\Lambda} \gamma_{FSR}, \bar{\Lambda} \to \bar{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma p$	2	
	$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to K^+ \bar{p} \Lambda, \Lambda \to p \pi^-$	$\pi^- \bar{p} \gamma p K^+$	1	4
	$\psi' ightarrow \gamma \chi_{c1}, \chi_{c1} ightarrow K^- p \bar{\Lambda}, \bar{\Lambda} ightarrow ar{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma p$	1	
flatbkg	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \bar{\Sigma}^0 K^- p, \bar{\Sigma}^0 \to \gamma \bar{\Lambda}, \bar{\Lambda} \to \bar{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma\gamma p$	3	
	$\psi' ightarrow \gamma \chi_{c0}, \chi_{c0} ightarrow K^- \bar{\Lambda} p, \bar{\Lambda} ightarrow ar{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma p$	2	
	$\psi' ightarrow \gamma \chi_{c0}, \chi_{c0} ightarrow K^+ \bar{p} \Lambda, \Lambda ightarrow p \pi^-$	$\pi^- \bar{p} \gamma p K^+$	1	0
	$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \pi^+ \Lambda \bar{\Sigma}^-, \Lambda \to p \pi^-, \bar{\Sigma}^- \to \bar{p} \pi^0$	$\pi^- \bar{p} \pi^0 \pi^+ \gamma p$	1	9
	$\psi' ightarrow ar{\Sigma}^0 K^- \Delta^+, ar{\Sigma}^0 ightarrow \gamma ar{\Lambda}, \Delta^+ ightarrow p \pi^0, ar{\Lambda} ightarrow ar{p} \pi^+$	$\bar{p}K^{-}\pi^{0}\pi^{+}\gamma p$	1	
	$\psi' \to \Sigma^+ \pi^- \bar{\Sigma}^{*0}, \Sigma^+ \to p \pi^0, \bar{\Sigma}^{*0} \to \bar{\Lambda} \pi^0, \bar{\Lambda} \to \bar{p} \pi^+$	$\pi^- \bar{p} \pi^0 \pi^0 \pi^+ p$	1	

Table 3: The information of the survived events from the $\psi(3686)$ inclusive MC sample in χ_{c2} region. nEvt and sum stand for the same meaning as Table 1.

decay chain	final states	nEvt	sum
$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to \Sigma^0 K^+ \bar{p}, \Sigma^0 \to \gamma \Lambda, \Lambda \to p \pi^-$	$\pi^- \bar{p} \gamma \gamma p K^+$	27	61
$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to p K^- \bar{\Sigma}^0, \bar{\Sigma}^0 \to \gamma \bar{\Lambda}, \bar{\Lambda} \to \bar{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma\gamma p$	24	01
$\psi' \to K^{*-} \bar{\Lambda} p, K^{*-} \to K^{-} \pi^{0}, \bar{\Lambda} \to \bar{p} \pi^{+}$	$\bar{p}K^{-}\pi^{0}\pi^{+}p$	5	0
$\psi' ightarrow \Lambda K^{*+} \bar{p}, \Lambda ightarrow p \pi^-, K^{*+} ightarrow K^+ \pi^0$	$\pi^- \bar{p} \pi^0 p K^+$	4	9
$\psi' \to \gamma \chi_{c2}, \chi_{c2} \to K^+ \bar{p} \Lambda, \Lambda \to p \pi^-$	$\pi^- \bar{p} \gamma p K^+$	1	2
$\psi' ightarrow \gamma \chi_{c2}, \chi_{c2} ightarrow K^+ \bar{p} \Lambda \gamma_{FSR}, \Lambda ightarrow p \pi^-$	$\pi^- \bar{p} \gamma p K^+$	1	2
$\psi' \to \gamma \chi_{c1}, \chi_{c1} \to K^- p \bar{\Lambda}, \bar{\Lambda} \to \bar{p} \pi^+$	$\bar{p}K^{-}\pi^{+}\gamma p$	2	3
$\psi' ightarrow \gamma \chi_{c1}, \chi_{c1} ightarrow K^+ \bar{p} \Lambda, \Lambda ightarrow p \pi^-$	$\pi^- \bar{p} \gamma p K^+$	1	5
	$\begin{array}{l} \text{decay chain} \\ \psi' \to \gamma \chi_{c2}, \chi_{c2} \to \Sigma^0 K^+ \bar{p}, \Sigma^0 \to \gamma \Lambda, \Lambda \to p \pi^- \\ \psi' \to \gamma \chi_{c2}, \chi_{c2} \to p K^- \bar{\Sigma}^0, \bar{\Sigma}^0 \to \gamma \bar{\Lambda}, \bar{\Lambda} \to \bar{p} \pi^+ \\ \psi' \to K^{*-} \bar{\Lambda} p, K^{*-} \to K^- \pi^0, \bar{\Lambda} \to \bar{p} \pi^+ \\ \psi' \to \Lambda K^{*+} \bar{p}, \Lambda \to p \pi^-, K^{*+} \to K^+ \pi^0 \\ \psi' \to \gamma \chi_{c2}, \chi_{c2} \to K^+ \bar{p} \Lambda, \Lambda \to p \pi^- \\ \psi' \to \gamma \chi_{c2}, \chi_{c2} \to K^+ \bar{p} \Lambda \gamma_{FSR}, \Lambda \to p \pi^- \\ \psi' \to \gamma \chi_{c1}, \chi_{c1} \to K^- p \bar{\Lambda}, \bar{\Lambda} \to \bar{p} \pi^+ \\ \psi' \to \gamma \chi_{c1}, \chi_{c1} \to K^+ \bar{p} \Lambda, \Lambda \to p \pi^- \end{array}$	$\begin{array}{ll} \begin{array}{ll} \mbox{decay chain} & \mbox{final states} \\ \hline \psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow \Sigma^0 K^+ \bar{p}, \Sigma^0 \rightarrow \gamma \Lambda, \Lambda \rightarrow p \pi^- & \pi^- \bar{p} \gamma \gamma p K^+ \\ \hline \psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow p K^- \bar{\Sigma}^0, \bar{\Sigma}^0 \rightarrow \gamma \bar{\Lambda}, \bar{\Lambda} \rightarrow \bar{p} \pi^+ & \bar{p} K^- \pi^+ \gamma \gamma p \\ \hline \psi' \rightarrow K^{*-} \bar{\Lambda} p, K^{*-} \rightarrow K^- \pi^0, \bar{\Lambda} \rightarrow \bar{p} \pi^+ & \bar{p} K^- \pi^0 \pi^+ p \\ \hline \psi' \rightarrow \Lambda K^{*+} \bar{p}, \Lambda \rightarrow p \pi^-, K^{*+} \rightarrow K^+ \pi^0 & \pi^- \bar{p} \pi^0 p K^+ \\ \hline \psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow K^+ \bar{p} \Lambda, \Lambda \rightarrow p \pi^- & \pi^- \bar{p} \gamma p K^+ \\ \hline \psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^- p \bar{\Lambda}, \bar{\Lambda} \rightarrow \bar{p} \pi^- & \pi^- \bar{p} \gamma p K^+ \\ \hline \psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^+ \bar{p} \Lambda, \Lambda \rightarrow p \pi^- & \pi^- \bar{p} \gamma p K^+ \\ \hline \psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^+ \bar{p} \Lambda, \Lambda \rightarrow p \pi^- & \pi^- \bar{p} \gamma p K^+ \end{array}$	$\begin{array}{lll} \begin{array}{lll} \mbox{decay chain} & \mbox{final states} & \mbox{nEvt} \\ \hline \psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow \Sigma^0 K^+ \bar{p}, \Sigma^0 \rightarrow \gamma \Lambda, \Lambda \rightarrow p \pi^- & \pi^- \bar{p} \gamma \gamma p K^+ & 27 \\ \hline \psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow p K^- \bar{\Sigma}^0, \bar{\Sigma}^0 \rightarrow \gamma \bar{\Lambda}, \bar{\Lambda} \rightarrow \bar{p} \pi^+ & \bar{p} K^- \pi^+ \gamma \gamma p & 24 \\ \hline \psi' \rightarrow K^{*-} \bar{\Lambda} p, K^{*-} \rightarrow K^- \pi^0, \bar{\Lambda} \rightarrow \bar{p} \pi^+ & \bar{p} K^- \pi^0 \pi^+ p & 5 \\ \hline \psi' \rightarrow \Lambda K^{*+} \bar{p}, \Lambda \rightarrow p \pi^-, K^{*+} \rightarrow K^+ \pi^0 & \pi^- \bar{p} \pi^0 p K^+ & 4 \\ \hline \psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow K^+ \bar{p} \Lambda, \Lambda \rightarrow p \pi^- & \pi^- \bar{p} \gamma p K^+ & 1 \\ \hline \psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow K^+ \bar{p} \Lambda \bar{\Lambda} \rightarrow p \pi^- & \pi^- \bar{p} \gamma p K^+ & 1 \\ \hline \psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^- p \bar{\Lambda}, \bar{\Lambda} \rightarrow p \pi^- & \pi^- \bar{p} \gamma p K^+ & 1 \\ \hline \psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^+ \bar{p} \Lambda, \Lambda \rightarrow p \pi^- & \pi^- \bar{p} \gamma p K^+ & 1 \\ \hline \end{array}$

check

Fit to the $\bar{p}K^+$ invariant mass distributions in χ_{c0} mass regions

Weighted Efficiency (Take χ_{c0} as an example)

Decay\Efficiency(%)	After smear	Weighted
$\chi_{c0} ightarrow \Sigma^0 \overline{p} k^+$	9.64	9.24
$\chi_{c1} ightarrow \Sigma^0 \overline{p} k^+$	10.85	10.82
$\chi_{c2} ightarrow \Sigma^0 \overline{p} k^+$	9.63	9.61

Systematic uncertainties

Source	Chic0(%)	chic1(%)	chic2(%)
Photon detection	2.0	2.0	2.0
PID and tracking	4.0	4.0	4.0
4C kinematicfit	0.9	0.9	1.5
Bkg(third_order)	1.2	1.4	1.3
KEDR	0.4	0.2	0.4
Fit range	1.2	1.2	1.3
Λ (Σ^0)mass window	0.2(0.2)	0.2(0.2)	0.2(0.2)
Weigted efficiency	0.3	0.3	0.5
Higher order contribution	-	0.2	0.6
Intermediate decay	2.0	2.5	2.1
Number of $\psi(3686)$	0.6	0.6	0.6
Total	5.3	5.6	5.6

$\succ \chi_{cJ} \rightarrow \Sigma^0 \overline{p} k^+ + c.c.$ is performed for the first time, the branching fractions of them are

channel	Efficiency	Nsignal	Branching Fraction($\chi_{cJ} \rightarrow \Sigma^0 \overline{p} k^+ + c.c$)
Xco	9.24%	760 ± 32	(2.93 \pm 0.12 \pm 0.16) $ imes$ 10 ⁻⁴
Xc1	10.82%	427 ± 22	(1.41 \pm 0.07 \pm 0.08) $ imes$ 10 ⁻⁴
χ_{c2}	9.61%	225 ± 16	(8.59 \pm 0.61 \pm 0.48) $ imes$ 10 ⁻⁵

We can not study the intermediate states well now, comments are welcome!
Thank you !!!