

BARBARA PASSALACQUA

Measurement of the relative phase between EM and strong amplitudes in $\psi(2S) \rightarrow p\bar{p}$

B. Passalacqua, M. Maggiora, M. Destefanis

OUTLINE

1. INTRODUCTION

- The BESIII Experiment
- Phase Measurement
- Initial State Radiation

2. DATA ANALYSIS

- Event Selection
- Radiative Corrections
- Simultaneous Fit
- Background Studies and Sistematic Uncertanties

- Cross Section
- Relative Phase
- 4. SUMMARY

.

Phase Measurement

The relative phase measurement by means of the interference pattern of the e^+e^- reaction cross section

as a function of the center of mass energy (W) near the resonance.

- Process $e^+e^- \rightarrow hadrons$ around Charmonia
- pQCD regime all amplitudes are expected to be almost real

But experiments pointing to another direction for the $J//\psi$

- e.g. $J/\psi \rightarrow p\bar{p}$ $\Phi = 89^{\circ} \pm 8^{\circ}$
- e.g. $J/\psi \rightarrow \rho \pi$ $\Phi = 106^{\circ} \pm 10^{\circ}$

A possible explanation:

Quarkonium OZI breaking decay as Freund and

Nambu

R. Baldini et al., Phys. Lett. B404, 362 (1997)

- R. Baldini et al., Phys. Lett. B444, 111 (1998)
- L. Kopke and N. Wermes, Phys. Rep. 174, 67(1989)
- J. Jousset et al., Phys. Rev. D41, 1389 (1990).

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D. (2019)

Initial State Radiation

In a e^+e^- pair collision one or both leptons can eventually radiate one or more photons:

the radiated energy reduces the effective CM energy of the e^+e^- annihilation.

The probability of radiating an ISR photon is described by the radiator function $W(s, x, \theta_{\gamma})$

- x is the fraction of the beam energy carried away by the ISR photon
- θ_{γ} is the angle of the photon.
- ISR photon energy ~50-100 MeV
- ISR correction factor $1+\delta \equiv \int_0^1 \frac{\sigma(x)}{\sigma_0} W(x) dx$, where $x = 1 \frac{E^2}{E_0^2}$

Check with ad-hoc generator

Cross section: $\sigma = \frac{N}{L\varepsilon'(1+\delta)}$

 $p(k)dk = \beta k^{\beta-1}$ probability distribution of the ISR photon The factor $\beta \approx 0.07$ is parametrized as:

$$\beta = 2\frac{\alpha}{\pi} \left[\ln\left(\frac{Q^2}{m^2}\right) - 1 \right]$$

Study of the process $e^+e^- \rightarrow p\bar{p}$ via initial state radiation at BESIII – BESIII Collaboration, M. Ablikim et al., Physical Review D, 99:092002, 2019

DATA ANALYSIS

Event Selection

Data collected during the 2018 run around the $\psi(2S)$ resonance (3.4 - 3.8 GeV) $BR(\psi(2S) \rightarrow p\bar{p}) = (2.94 \pm 0.08) \times 10^{-4}$

Beam Energies:

Nominal E [MeV]	E [MeV]	$\sigma_E[MeV]$	$L \ [pb^{-1}]$
3580.0	3581.543	0.060	85.7
3670.0	3670.158	0.063	84.7
3681.0	3680.144	0.061	84.8
3683.0	3682.752	0.115	28.7
3684.0	3684.224	0.119	28.7
3685.5	3685.264	0.105	26.0
3686.6	3686.496	0.120	25.1
3690.0	3691.363	0.075	69.4
3710.0	3709.755	0.074	70.3

Kinematic cuts for the proton tracks:

- $|R_{xy}| < 1 \ cm$, $|R_z| < 10 \ cm$
- $P \leq 2 \, GeV/c$
- $|\cos\theta| < 0.8$
- $E_{show}/P < 0.5$ for protons

Cuts for both the proton and the antiproton tracks:

- $178^{\circ} < \theta_{p\bar{p}} < 180^{\circ}$, $\theta_{p\bar{p}}$ is the polar angle between the two tracks $p\bar{p}$ in the CM frame
- PID tags selecting proton and antiproton
- $1.4 \, GeV/c < P_{p\bar{p}} < 1.7 \, GeV/c$

Selections optimization:

- Barrel region
 - Back to back and charged tracks

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D (2019)

Measurement of relative phase between Electromagnetic and Strong amplitudes in $\psi(2S) \rightarrow p\bar{p}$

MonteCarlo Simulations $e^+e^- \rightarrow \psi(2S) \rightarrow p\bar{p}$

BARBARA PASSALACOUA

Values of reconstructed events obtained from the Montecarlo simulations

Nominal Energy $[MeV]$	$N_{reconstructed}$	Efficiency	Error Efficiency
3580.0	110	0.7025	0.0038
3670.0	180	0.7002	0.0038
3681.0	257	0.6941	0.0038
3683.0	304	0.6981	0.0038
3684.0	1408	0.6959	0.0038
3685.5	3113	0.6944	0.0038
3686.6	2955	0.6998	0.0038
3690.0	622	0.6952	0.0038
3710.0	300	0.6951	0.0038

The statistical uncertainty is estimated as binomial:

$$\frac{\sigma_{\varepsilon}}{\varepsilon} = \sqrt{\frac{1-\varepsilon}{N_{gen}}}$$

Event Selection - Real data $e^+e^- \rightarrow \psi(2S) \rightarrow p\bar{p}$

Counts

Radiative Corrections

In central production process:

$$\beta = 4 \ \frac{\alpha}{\pi} \left[\ln \left(\frac{W_1}{m_e} \right) - 0.5 \right]$$

According to Touscheck, the correction factor is:

$$C = |1 - E_n^{(1-\beta)} + 0.5 E_n^{(2-\beta)}|$$

Where $E_n = k/R$

The energy after ISR:

$$W_2 = \sqrt{W_1^2 - 2kW_1}$$

- Simulated angular distribution $\propto 1 + \alpha cos^2 \theta$ where $\alpha = 0.68$ ٠
- Photon ISR energy $\langle E_{\gamma} \rangle \sim 100 \ keV$ ۰
- Collinearity: usually $\theta_{DIFF} \sim 4^{\circ}$, ۰

where $\theta_{DIFF} = 180^{\circ} - \theta_{afterISR}$

Preliminary distribution of proton momentum after ISR, private algorithm for simulation at 3.710 GeV

Number of event generated: 10000

Simultaneous Fit

Measurement of the relative phase between EM and strong amplitudes in $\Psi(2S) \rightarrow p\bar{p}$ 1

13/21

Sistematic Uncertanties

Variations on the selection criteria:

Cut	Value	Variation			
E_{show}/p	0.5	± 0.05			
$\theta_{p \bar{p}}$	$178^{\circ} < < 180^{\circ}$	-0.5° and $+1^{\circ}$			
fit	$-3\sigma < < 3\sigma$	± 0.5			
PID	0.00	+ 0.001			

Fit routine:

- Simultaneous fit
- Sideband method

Considering the variables as uncorrelated:

$$\sigma_{syst} = \sqrt{\sum_i \sigma_i^2}$$

Measurement of the phase between Strong and Electromagnetic $J/\psi \rightarrow p\bar{p}$ Decay amplitudes, Destefanis M., Baldini Ferroli R. et al. BAM-00106, BESIII memo

Measurement of relative phase between Electromagnetic and Strong amplitudes in $\psi(2S) \rightarrow p\bar{p}$

Sistematic Uncertanties

Number of events and their error for each number of $p\bar{p}$ pairs variation and total systematic error:

Energy $[MeV]$	N_E	σ_E	N_T	σ_T	N_{PID}	σ_{PID}	N_F	σ_F	σ_{tot}
3580.0	80.03	5.19	6.05	0.94	80.55	8.97	93.51	5.36	9.84
3670.0	62.77	4.57	10.94	2.54	62.77	7.92	122.54	5.23	9.28
3681.0	537.38	13.38	27.02	3.29	537.38	23.18	531.39	13.11	25.11
3683.0	349.42	10.80	12.73	2.38	350.28	18.72	349.87	10.71	20.31
3684.0	1381.20	21.54	5.17	1.66	1396.93	37.38	1405.44	21.23	40.20
3685.5	3076.45	32.09	45.88	4.06	3097.80	55.66	3126.30	31.87	60.09
3686.6	2938.12	31.29	31.07	3.83	2094.12	54.17	3125.32	31.58	58.82
3690.0	736.47	15.68	21.02	2.83	740.49	27.21	752.39	15.43	29.37
3710.0	236.59	8.87	53.67	3.44	236.59	15.38	259.07	8.91	16.97

$$E \equiv \frac{E_{show}}{p}$$
 $T \equiv \theta_{p\bar{p}}$ $F \equiv \text{fit}$

Cross Section

 $\sigma = \frac{N_{p\bar{p}}}{L \varepsilon}$

N number of $par{p}$ pairs

L integrated luminosity

ε efficiency

Cross section for each CM energy with their statistical and systematic error

Nominal Energy $[MeV]$	$\sigma[pb]$	$\sigma_{stat}[pb]$	$\sigma_{syst}[pb]$
3580.0	1.43	0.16	0.23
3670.0	1.14	0.14	0.22
3681.0	9.66	0.42	0.58
3683.0	18.68	1.00	1.40
3684.0	74.01	1.98	2.79
3685.5	181.42	3.26	4.59
3686.6	177.80	3.28	4.66
3690.0	16.23	0.59	0.84
3710.0	5.13	0.33	0.47

Observed cross section for the $\mathrm{p}\bar{p}$ final states

Error bars include both statistical and systematic uncertanties

Relative Phase

Fit of the $p\bar{p}$ cross section

The cross section can be written as:

$$\sigma[nb] = \left| \sqrt{12\pi B_{in} B_{out} \left[\frac{\hbar c}{W} \right]^2 \cdot 10^7} \frac{C_1 + C_2 e^{i\phi}}{M_{\psi} - W - i\frac{\Gamma}{2}} + C_3 e^{i\phi} \right|^2$$

Where C_1, C_2 and C_3 are the three parameters which correspond to the A_{3g}, A_{γ} and A_{EM}

- Multiple extraction to simulate ISR effects
- Cross section calculated at each extraction

First generation measurement

Relative Phase: $\phi = (89.05 \pm 14.70)^{\circ}$

Branching Ratio: $B_{out} = (3.06 \pm 0.07) \times 10^{-4}$

 $B_{PDG} = (2.94 \pm 0.08) \times 10^{-4}$

Cross section at the continuum: $\sigma_c = (7.54 \pm 1.12)pb$

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D (2019)

Summary

Simultaneous fit of momentum spectra

Background studies and Systematic uncertanties

BARBARA PASSALACQUA

Thanks!-

BACKUP SLIDES

A proposal: Quarkonium OZI breaking decay as Freund and Nambu

Considering quarkonium as a superposition of a narrow resonance v_0 , not directly decay into hadrons, and a wide resonance, a glueball O, not coupled to leptons but strongly coupled to hadrons:

Scheme of the process iterated in f, where f is the coupling between v and O

 $A_{strong} = \frac{\sqrt{\Gamma_{ee}}M_V M_O f \sqrt{\Gamma_O}}{(M_V^2 - W^2 - iM_V \Gamma_V)(M_O^2 - W^2 - iM_O \Gamma_O) - M_V M_O f^2}$

*Dynamics of the Zweig- Izuka Rule and a New Vector Meson below 2 GeV/c*², Peter G. O. Freund and Yoichiro Nambu Phys. ReV. Lett. 34, 1645 R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997)

21/10/2019

Was an interference already seen?

Yes, without the strong contribution

J.Z. Bai et al., Phys. Lett. B 355, 374-380 (1995)

21/10/2019

nterference

Radiator function

$$W(s,x) = \Delta\beta x^{\beta-1} - \frac{\beta}{2}(2-x) + \frac{\beta^2}{8}((2-x)(3\ln(1-x) - 4\ln x) - 4\frac{\ln(1-x)}{x} - 6 + x)$$

where

$$\begin{split} L &= 2ln \frac{\sqrt{s}}{m_e} \\ \Delta &= 1 + \frac{\alpha}{\pi} \left(\frac{3}{2}L + \frac{1}{3}\pi^2 - 2 \right) + (\frac{\alpha}{\pi})^2 \delta_2 \\ \delta_2 &= L^2 \left(\frac{9}{8} - 2\xi_2 \right) - L (\frac{45}{16} - \frac{11}{2}\xi_2 - 3\xi_3) - \frac{6}{5}\xi_2^2 - \frac{9}{2}\xi_3 - 6\xi_2 ln2 + \frac{57}{12} \\ \beta &= \frac{2\alpha}{\pi} (L - 1), \qquad \xi_2 = 1.64493407, \qquad \xi_3 = 1.2020569 \end{split}$$

The angular distribution of the ISR photon is described by:

$$P(\theta_{\gamma}) = \frac{\sin^2 \theta_{\gamma} - \frac{x^2 \sin^4 \theta_{\gamma}}{2(x^2 - 2x + 2)}}{(\sin^2 \theta_{\gamma} + \frac{m^2}{E^2} \cos^2 \theta_{\gamma})^2} - \frac{\frac{m^2 (1 - 2x) \sin^2 \theta_{\gamma} - x^2 \cos^4 \theta_{\gamma}}{E^2}}{(\sin^2 \theta_{\gamma} + \frac{m^2}{E^2} \cos^2 \theta_{\gamma})}$$

21/10/2019

Initial State Radiation

BARBARA PASSALACQU

Crystal Ball function

$$f(x, \alpha, n, \bar{x}, \sigma) = N \begin{cases} \exp\left(-\frac{(x-\bar{x})^2}{2\sigma^2}\right) & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \left(B - \frac{x-\bar{x}}{\sigma}\right)^n & \text{for } \frac{x-\bar{x}}{\sigma} \le -\alpha \end{cases}$$

where

$$B = \frac{n}{|\alpha|} - |\alpha|$$
$$N = \frac{1}{\sigma(C+D)}$$

$$C = \frac{n}{|\alpha|} \frac{1}{n-1} \exp(-\frac{|\alpha|^2}{2})$$

$$D = \sqrt{\frac{\pi}{2}} \left(1 + \operatorname{erf}\left(\frac{|\alpha|}{\sqrt{2}}\right)\right)$$

M. J. Oreglia, A Study of the Reaction $\psi' \rightarrow \gamma \gamma \psi$, Ph. D. Thesis, SLAC-R-236, 1980

21/10/2019

Signal Distribution

The cross section can be written as:

$$\sigma[nb] = \left| \sqrt{12\pi B_{in} B_{out} \left[\frac{\hbar c}{W} \right]^2 \cdot 10^7} \frac{C_1 + C_2 e^{i\phi}}{M_\psi - W - i\frac{\Gamma}{2}} + C_3 e^{i\phi} \right|^2$$

Where C_1, C_2 and C_3 are the three parameters which correspond to the A_{3g}, A_{γ} and A_{EM} The Real and the Imaginary part of the cross section AA and BB respectively, can be defined as:

$$AA = \sqrt{C_0} \frac{(C_1 + C_2 \cos \phi) - (M_{\psi} - W) + C_2 \Gamma/2 \sin \phi}{(M_{\psi} - W)^2 + (\Gamma/2)^2} + C_3 \cos \phi}$$

BB = $\sqrt{C_0} \frac{(C_1 + C_2 \cos \phi) \Gamma/2 + C_2 \sin \phi}{(M_{\psi} - W)^2 + (\Gamma/2)^2} + C_3 \sin \phi$

For each extraction the cross section is:

$$\sigma_i = AA^2 + BB^2$$

The final value of the simulated cross section is:

$$\sigma = \frac{1}{N_{est}} \sum \sigma_i$$

Measurement of the phase between Strong and Electromagnetic $J/\psi \rightarrow p\bar{p}$ Decay amplitudes, Destefanis M., Baldini Ferroli R. et al. BAM-00106, BESIII memo

Measurement of the relative phase between EM and strong amplitudes in $\psi(2S) \rightarrow p\bar{p}$

D

The BESIII Experiment

Where? Beijing in People's Republic of China (PRC)

BESIII Collaboration now has ~500 members from 72 institution

from 15 countries, including IHEP and INFN

Beijing Electron Positron Collider II (BEPCII)

- Beam energy: 1.0 2.3 GeV/c
- Design Luminosity: 10³³ cm⁻²s⁻¹
- Center of mass energy: ranging 2.0 4.6 GeV
- Circumference: 237 m

Physics of BESIII

Charmonium, D, τ , Light Hadron Spectroscopy and search for New Hadronic states

BEijing Spectrometer III (BESIII)

- Drift chamber (MDC), momentum resolution for charged particles is 0.5% at 1 GeV
- Electromagnetic calorimeter EMC, energy resolution* 2.5% and position resolution* 6 mm
- **Time of Flight system** (TOF), time resolution* 80 ps
- Solenoid magnet providing a 1.0 Tesla magnetic field
- Muon Chamber System (MUC) made of Resistive Plate Chamber
- Geometrical acceptance 93 % of 4 π

*in the barrel

Physics at BESIII , Asner D. M. et al. Int. J. Mod. Phys A24 (2009) S1-794 arXiv: 0809.1869 [hep - ex]