Preliminary analysis for the decay of $\psi(2S) \rightarrow \gamma \eta_c(2S) \rightarrow \gamma \pi^+ \pi^- \eta(\gamma \gamma)$

Guangrui LIAO¹, Kai ZHU² 1. GXNU 2. IHEP Dec. 18th, 2019 Charmonium group meeting

Outline

- Motivation
- Boss version and Dataset
- Selection
- Background
- Fit of the mass spectrum
- Summary

Motivation

- Measurements about $\eta_c(2S)$ decay are scarce.
- Maybe there is certain relationship between hadronic decays of $\eta_c(2S)$ and η_c , like J/ ψ and $\psi(2S)$.

$\eta_c(2S)$ DECAY MODES			
	Mode	Fraction (Γ_i/Γ)	Confidence level
Г1	hadrons	not seen	
Γ2	$\overline{K}\overline{K}\pi$	$(1.9 \pm 1.2)\%$	
F ₃	$K\overline{K}\eta$	$(5 \pm 4) \times 10^{-1}$	3
Γ4	$2\pi^+ 2\pi^-$	not seen	
Γ ₅	$\rho^0 \rho^0$	not seen	
Γ ₆	$3\pi^+3\pi^-$	not seen	
Γ7	$K^{+}K^{-}\pi^{+}\pi^{-}$	not seen	
F ₈	$K^{*0}\overline{K}^{*0}$	not seen	
Гg	$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.4±1.0) %	
Γ ₁₀	$K^{+}K^{-}2\pi^{+}2\pi^{-}$	not seen	
Γ11	$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}+$ c.c.	seen	
F ₁₂	2K + 2K -	not seen	
Γ ₁₃	$\phi \phi$	not seen	
Γ ₁₄	P P	seen	
Γ15	$\gamma\gamma$	(1.9±1.3) × 10 [−]	-4
Γ ₁₆	$\gamma J/\psi(1S)$	< 1.4 %	90%
Γ17	$\pi^+\pi^-\eta$	not seen	
Γ ₁₈	$\pi^+\pi^-\eta'$	not seen	
Γ ₁₉	$\pi^+\pi^-\eta_c(1S)$	< 25 %	90%

PDG 2019

• Search for potential structure with the channel, $\eta_{\rm c}(2{\rm S}) \rightarrow \pi^+ \pi^- \eta$.

BOSS version and Data set

- BOSS version: 7.0.4
- Data samples:
 - ✓ 09 $\psi(2S)$ data (161.63 pb^{-1}) ✓ 12 $\psi(2S)$ data (506.92 pb^{-1}) ✓ off-resonance data at 3.65 GeV (43.88 pb^{-1})
- Official inclusive MC samples for $09/12 \psi(2S)$ data are used.
- Exclusive MC

$$\checkmark \quad \psi(2S) \longrightarrow \gamma \eta_{c}(2S), \ \eta_{c}(2S) \longrightarrow \pi^{+}\pi^{-}\eta$$

$$\checkmark \quad \psi(2S) \longrightarrow \gamma \chi_{cJ}, \ \chi_{cJ} \longrightarrow \pi^{+}\pi^{-}\eta$$

$$\checkmark \quad \psi(2S) \longrightarrow \gamma \pi^{+}\pi^{-}\eta$$

$$\checkmark \quad \psi(2S) \longrightarrow \pi^{+}\pi^{-}\eta \gamma_{FSR}$$

• Charged tracks

✓ $|\cos\theta| < 0.93$, $R_z < 10.0$ cm, $R_{xy} < 1.0$ cm Exactly 2 good charged tracks with 0 net charge.

• PID

- ✓ $Prob(\pi) > Prob(K)$
- $\checkmark \quad \operatorname{Prob}(\pi) > 0.001$
- Photons
 - ✓ E > 25 MeV(Barrel), E > 50 MeV (Endcap)
 - ✓ Dang > 20°
 - ✓ TDC \in [0,14] (in the unit of 50 ns).

At least 3 good photons.

- 5C kinematic fit $(\psi(2S) \rightarrow \gamma \pi^+ \pi^- \eta(\gamma \gamma))$
 - ✓ Four momentum and η mass
 - ✓ Iterate the fit over all combination of η candidates and the radiative photon
 - ✓ The combination with the least $\chi^2(5C)$ will be taken as the best one
- In order to suppress the background from $\psi(2S) \rightarrow \gamma \gamma \eta(\gamma \gamma) \pi^+ \pi^-$, and $\psi(2S) \rightarrow \eta(\gamma \gamma) \pi^+ \pi^- \gamma_{FSR}$, the requirement below is applied to the sample:

$$\chi^2(5C) < \chi^2_{2\gamma}(5C), \quad \chi^2(5C) < \chi^2_{4\gamma}(5C)$$

• 5C kinematic fit ($\psi(2S) \longrightarrow \gamma \pi^+ \pi^- \eta(\gamma \gamma)$)

 $\chi^2(5C) < 20$

4C: the constraints for mass of η and four momentum are retained, but the mass of radiative photon is floated.

Red : $\psi(2S) \rightarrow \gamma \eta_c(2S) \rightarrow \gamma \pi^+ \pi^- \eta(\gamma \gamma)$ Blue : $\psi(2S) \rightarrow \pi^+ \pi^- \eta(\gamma \gamma)$

There are no obvious π^0 and J/ ψ signals in the invariant mass of $\gamma(M1)\gamma_{1/2}$ and $\mu^+\mu^-/e^+e^-_{10}$

Main background

• According to the study with inclusive MC, the main backgrounds are :

$$\checkmark \quad \psi(2S) \longrightarrow \gamma \chi_{c1/2}, \ \chi_{c1/2} \longrightarrow \pi + \pi - \pi^0 / \eta$$

- $\checkmark \quad \psi(2S) \longrightarrow \gamma \, \pi^0 \, (\eta) \pi^+ \pi^- \text{ (including resonances, } \omega, \rho^0, \dots \text{)}$
- $\checkmark \quad \psi(2S) \longrightarrow \pi + \pi \eta(\gamma_{FSR})$

Fit of Mass spectrum

• Signal line shape: $(E_{\gamma}^{3} \cdot BW(m) \cdot DMP(E_{\gamma})) \otimes$ Gaussian

 \checkmark *m*: invariant mass of $\pi^+\pi^-\eta$

$$\checkmark \quad E_{\gamma} : \frac{m_{\psi(2S)}^2 - m^2}{2m_{\psi(2S)}}$$

✓ BW(m): Breit – Wigner function

$$\checkmark DMP(E_{\gamma}): \frac{E_{0}^{2}}{E_{\gamma}E_{0} + (E_{\gamma}-E_{0})^{2}} \left(E_{0} = \frac{m_{\psi(2S)}^{2} - m_{\eta_{c}(2S)}^{2}}{2m_{\psi(2S)}} \right) (V.V. \text{ Anashin et al.}, arXiv:1012.1694 [hep-ex])$$

• Other components

$$\checkmark \quad \psi(2S) \longrightarrow \gamma \chi_{c1/2}, \chi_{c1/2} \longrightarrow \pi + \pi - \eta: MC \otimes Gaussian$$

$$\checkmark \quad \psi(2S) \longrightarrow \gamma \eta \pi^{+} \pi^{-} : MC \text{ shape}$$

$$\checkmark \quad \psi(2S) \longrightarrow \pi + \pi - \eta(\gamma_{FSR}) : MC \text{ shape}$$

Fit of Mass spectrum

Red curve: total fit **Blue dashdoted:** $\eta_c(2S)$ Green dash and Blue dash: χ_{c1} and χ_{c2}

Purple dash: $\psi(2S) \longrightarrow \pi + \pi - \eta(\gamma_{FSR})$ (FSR) Black dash : $\psi(2S) \longrightarrow \gamma \eta \pi^+ \pi^-$ (PHSP)

Fitting result

 $\eta_{c}(2S): 105 \pm 21 (5.83\sigma)$ $\chi_{c1}: 17554 \pm 145$ $\chi_{c2}: 2563 \pm 63$ FSR: 161 ± 23 PHSP: 900 ± 98

Invariant mass spectrum of $\pi^+\pi^-$ within $\eta_c(2S)$ mass region (3.60--3.65)

Summary

- Using $\psi(2S)$ data sample collected at BESIII, the channel, $\eta_c(2S) \longrightarrow \pi^+ \pi^- \eta$, has been observed for the first time with 5.83σ
- The branching fraction of $\eta_c(2S) \longrightarrow \pi^+ \pi^- \eta$ is determined to be:

$$Br = \frac{N_{signal}}{N_{\psi(2S)} \cdot \varepsilon \cdot Br_1 \cdot Br_2} = (4.29 \pm 0.86) \times 10^{-3}$$
$$Br_1 : \psi (2S) \to \gamma \eta_c (2S)$$
$$Br_2 : \eta \to \gamma \gamma$$

• There is an enhancement around $f_2(1270)$ in the mass spectrum of $\pi^+\pi^-$ within the mass region of $\eta_c(2S)$.

Back up

Data and MC

• 2 events after shifted within the range $M_{\pi+\pi-\eta} \in [3.60, 3.65] \text{ GeV/c}^2$.

•
$$f = \frac{L_{\psi(2S)}}{L_{off-res}} \times \frac{E^2_{off-res}}{E^2_{\psi(2S)}} = 3.61 / 11.33 (2009 / 2012)$$