Study of $e^+e^- \rightarrow \gamma D_s^+ D_s^-$ at BESIII

Wenjing Zhu¹, XiaoLong Wang¹,ChangZheng Yuan² Fudan University¹ IHEP² 2019.10.9

Outline

- Motivation and introduction
- BESIII data samples
- General selections
- Signals and background study
- Summary and plan

Motivations

- Z(3930) was discovered by Belle in $\gamma\gamma \rightarrow D\overline{D}$ process is asigned to be $\chi_{c2}(2P)$.
 - M=(3929 \pm 5 \pm 2)MeV/ c^2 and Γ =(29 \pm 10 \pm 2)MeV
- $X^*(3860)$ was discovered by Belle in $e^+e^- \rightarrow J/\psi + D\overline{D}$, which agrees with $\chi_{c0}(2P)$.
 - $M = (3862 + 26 + 40) \text{ MeV/}c^2 \text{ and } \Gamma = (201 + 154 + 88) \text{ MeV} 67 82) \text{ MeV}$
- The highest charmoniumlike vector Y(4660) state was discovered in $f_0(980)\psi'$ final states, where $f_0(980)$ could contain ssbar components.
- How about replacing $D\overline{D}$ with $D_s^+ D_s^-$?
- The radiative decay Y(4660) $\rightarrow \gamma D_s^+ D_s^-$ should be allowed, and a $\chi_{cJ}(nP)$ -like state may exist in $D_s^+ D_s^-$, since there should ssbar in $Ds^+ Ds^-$ system.
- BESIII is taking data on Y(4660), which allows the search.
- We have Y(4360) data right now, which can be used for preliminary study.

BESIII data/MC samples and MC simulation I

- XYZ Data(Boss 703) at Ecms=4.36GeV
- Signal MC:
 - 0.1 M events at \sqrt{s} =4.36GeV and \sqrt{s} =4.66GeV
 - The channel:
 - $e^+e^- \rightarrow \gamma X(3.94), (via PHSP) \quad X(3.94) \rightarrow Ds^+Ds^-(via PHSP)$
 - $Ds^+ \rightarrow K^+ K^- \pi^+$, (via D_DALITZ)
 - $Ds^- \rightarrow K^+ K^- \pi^-$, (via D_DALITZ)
- Inclusive MC: MC-703(hadron) at √s=4.36GeV
- Bkg MC:
 - 0.1 M events at √ s=4.36GeV
 - The channel:
 - $e^+e^- \rightarrow Y \rightarrow D_s^{*-}D_s^+$ (via HELAMP 1.0 0.0 0.0 0.0 -1.0 0.0)

Case1:

- $D_s^{*-} \rightarrow \gamma Ds^-(93.5\pm0.7) \%$ (via VSP_PWAVE), $Ds^{*-} \rightarrow \pi^0 Ds^-(5.8\pm0.7)\%$ (via VSS), $Ds^{*-} \rightarrow e^+e^-Ds^-(6.7\pm1.6) \times 10^{-3}$ (via PHSP), $Ds^- \rightarrow$ anything
- $D_s^+ \rightarrow K^+ K^- \pi^+$ (via D_DALITZ)

BESIII data/MC samples and MC simulation II

• Case2:

 $D_{s}^{*-} \rightarrow \gamma Ds^{-}(93.5 \pm 0.7) \%$ (via VSP_PWAVE), $Ds^{*-} \rightarrow \pi^{0}Ds^{-}(5.8 \pm 0.7)\%$ (via VSS), $Ds^{*-} \rightarrow e^{+}e^{-}Ds^{-}(6.7 \pm 1.6) \times 10^{-3}$ (via PHSP), $Ds^{-} \rightarrow K^{+}K^{-}\pi^{-}$ (via D_DLITZ) $Ds^{+} \rightarrow anything$

- 0.1 M events at √ s=4.36GeV
- The channel:

 $e^+e^- \rightarrow Y \rightarrow Ds^{*+}Ds^{*-}$ (via PHSP), $Ds^{*+} \rightarrow \gamma Ds^+$ (via VSP_PWAVE), $Ds^{*-} \rightarrow \gamma Ds^-$ (via VSP_PWAVE), $Ds^+ \rightarrow K^+K^-\pi^+$ (via D_DLITZ)

- 0.1 M events at \sqrt{s} = 4.36GeV
- The channel :

 $e^+e^- \rightarrow Y \rightarrow \gamma_{ISR}Ds^+Ds^-$ (via VSS), $Ds^+ \rightarrow K^+K^-\pi^+$ (via D_DLITZ)

Selection criteria I

- Reconstruction:
 - $e^+e^- \rightarrow \gamma Ds^+ Ds^-$, $Ds^+ \rightarrow K^+K^-\pi^+/\phi\pi^+$, $\phi \rightarrow K^+K^-$
- Charged tracks:
 - N(trk)≥ 3
 - $V_{xy} = \sqrt{Vx^2 + Vy^2} < 1 \text{ cm and } |Vz| < 10 \text{ cm}$
 - $|cos\theta| < 0.93$, in the active region of MDC
- Photon(s):
 - E_barrel > 25 MeV or E_endcap > 50 MeV
 - $N(\gamma) \ge 1$
 - >5° away from any good charged track
 - t < 700ns after T0 of one event

Selection criteria II

• PID:

- $Prob(K) > Prob(\pi)$ and Prob(K) > 0.001 for Kaon
- Otherwise, it is a pion.
- Kinematic constrain
 - 4C kinematic fit
 - $M_{rec}(\gamma Ds)$ constraint to Ds nominal mass
- Mass windows:
 - $|M(K^+K^-\pi^+) m(Ds)| < 15 \text{ MeV for } D_s \text{ signal}$
 - $|M_{rec}(\gamma D_s) m(Ds)| < 15 \text{ MeV}$ for another D_s
 - **Ds**^{*} veto: $|M(\gamma D_s) m(Ds^*)| > 15$ MeV and $|M_{rec}(K^+K^-\pi^+) m(Ds^*)| > 15$ MeV
- Efficiencies:
 - $e^+e^- \rightarrow \gamma Ds^+Ds^-$, $Ds^+ \rightarrow K^+K^-\pi^+$: $\varepsilon = 32.28\%$ at Ecms=4.36 GeV
 - $e^+e^- \rightarrow \gamma Ds^+ Ds^-$, $Ds^+ \rightarrow K^+K^-\pi^+$: $\varepsilon = 19.61\%$ at Ecms=4.66 GeV

 D_s signals in $M(K^+K^-\pi^+)$

PDF: Gaussian + second-order polynomial

 \blacktriangleright $\sigma \approx 4 \text{ MeV}/c^2$

Signal region: $|M(K^+K^-\pi^+) - m(Ds)| < 15 \text{ MeV}$

D_s in $M(K^+K^-\pi^+)$ from bkgs

PDF: Gaussian + second-order polynomial

2019/10/9

Resolutions of $M_{rec}(\gamma Ds^+)$

PDF: Gaussian/Crystal_ball + second-order polynomial/Agus

- $\succ M_{rec}(\gamma D_s) = M(D_s)$ for signal
- Mass resolution increases from Ecms=4.36 GeV to 4.66 GeV, becoming worse
- Mass window for another Ds:

■ $|M_{rec}(\gamma K^+K^-\pi^+) - 1.968| < 30 \text{ MeV}$, 4.36 GeV data used currently

$M_{rec}(\gamma D_s^{+})$ from bkgs in MC samples

PDF: Crystal ball + Agus

Distributions of $M(\gamma D_s^+)$

> Second D_s* veto: $|M(K^+K^-\pi^+) - m(Ds^*)| > 15 \text{ MeV}$

2019/10/9

Energy and angle of γ

2019/10/9

 \succ E(γ) is related to the mass of X and \sqrt{s} in signal MC

14

Signal in $M_{rec}(\gamma)$ in MC simulation

Distributions of E(γ) and $M_{rec}(\gamma)$

Inclusive MC describes most of the events observed in data.
 Besides bkgs from inclusive MC, Ds*D_S, Ds*Ds*and γ_{ISR}D_SD_S, there are still room from other contributions in data.

 \blacktriangleright Are they events of e+e- -> γ +DsDs directly?

2019/10/9

Summary and plan

- Summary
 - We have studied the signal MC at $\sqrt{\,s}{=}4.36 \text{GeV}$ and $\sqrt{\,s}{=}4.66 \text{GeV}$
 - We have researched for Data at $\sqrt{s}=4.36$ GeV and have estimated backgrounds by inclusvie MC , D_sDs^* , Ds^*Ds^* and $\gamma_{ISR}D_sD_s$.
- Plan
 - To optimize general selections
 - To study more data and MC samples in different energy points.

rowNo	decay tree (decay initial-final states)	iDcyTr	iDcyIFSts	nEtrs	nCEtrs
1	$e^+e^- ightarrow \pi^0\pi^+\pi^-K^+K^- (e^+e^- ightarrow \pi^+\pi^-K^+K^-\gamma\gamma)$	22	18	3631	3631
2	$e^+e^- ightarrow \pi^0\pi^+\pi^-K^+K^-\gamma^I \ (e^+e^- ightarrow \pi^+\pi^-K^+K^-\gamma^I\gamma\gamma)$	5	0	3227	6858
3	$\begin{array}{c} e^+e^- \to K^+K^-a_1^0\gamma^I, a_1^0 \to \pi^-\rho^+, \rho^+ \to \pi^0\pi^+ \\ (e^+e^- \to \pi^+\pi^-K^+K^-\gamma^I\gamma\gamma) \end{array}$	469	0	276	7134
4	$ \begin{array}{c} e^+e^- \rightarrow \pi^+\pi^-\eta K^+K^-\gamma^I, \eta \rightarrow \gamma\gamma \\ (e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I\gamma\gamma) \end{array} \end{array} $	1312	0	274	7408
5	$ \begin{array}{c} e^+e^- \rightarrow K^+K^-a_1^0\gamma^I, a_1^0 \rightarrow \pi^+\rho^-, \rho^- \rightarrow \pi^0\pi^- \\ (e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I\gamma\gamma) \end{array} \end{array} $	179	0	268	7676
6	$ \begin{array}{c} e^+e^- \rightarrow \pi^+\pi^-\eta K^+K^-, \eta \rightarrow \gamma\gamma \\ (e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma\gamma) \end{array} \end{array} $	100	18	267	7943
7	$\begin{array}{l} e^+e^- \to f_2(1270)K^+K^-\gamma^I, f_2(1270) \to \pi^+\pi^- \\ (e^+e^- \to \pi^+\pi^-K^+K^-\gamma^I) \end{array}$	221	41	249	8192
8	$e^+e^- ightarrow a_2^0 K^+ K^- \gamma^I, a_2^0 ightarrow \pi^- ho^+, ho^+ ightarrow \pi^0 \pi^+ (e^+e^- ightarrow \pi^+ \pi^- K^+ K^- \gamma^I \gamma \gamma)$	54	0	245	8437
9	$\begin{array}{c} e^+e^- \rightarrow a_2^0 K^+ K^- \gamma^I, a_2^0 \rightarrow \pi^+ \rho^-, \rho^- \rightarrow \pi^0 \pi^- \\ (e^+e^- \rightarrow \pi^+ \pi^- K^+ K^- \gamma^I \gamma \gamma) \end{array}$	58	0	239	8676
10	$ \begin{array}{l} e^+e^- \rightarrow \pi^+\pi^-\eta K^+K^-\gamma^I, \eta \rightarrow \pi^0\pi^0\pi^0 \\ (e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I\gamma\gamma\gamma\gamma\gamma\gamma\gamma) \end{array} \end{array} $	231	7	224	8900
11	$e^+e^- ightarrow \pi^+\pi^-\eta K^+K^-, \eta ightarrow \pi^0\pi^0\pi^0 (e^+e^- ightarrow \pi^+\pi^-K^+K^-\gamma\gamma\gamma\gamma\gamma\gamma)$	334	80	204	9104
12	$e^+e^- ightarrow K^+K^-b_1^0\gamma^I, b_1^0 ightarrow \pi^0\omega, \omega ightarrow \pi^0\pi^+\pi^- (e^+e^- ightarrow \pi^+\pi^-K^+K^-\gamma^I\gamma\gamma\gamma\gamma)$	192	22	195	9299
13	$ \begin{array}{c} e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I \\ (e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I) \end{array} \end{array} $	1955	41	187	9486
14	$ \begin{array}{c} e^+e^- \rightarrow \pi^+K^*K^-\gamma^I, K^* \rightarrow \pi^-K^+ \\ (e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I) \end{array} \end{array} $	533	41	183	9669
15	$ \begin{array}{c} e^+e^- \to D^{*+}D^{*-}, D^{*+} \to \pi^+D^0, D^{*-} \to \pi^-\bar{D}^0, D^0 \to \pi^0\pi^+K^-, \bar{D}^0 \to \pi^0\pi^-K^+ \\ (e^+e^- \to \pi^+\pi^+\pi^-\pi^-K^+K^-\gamma\gamma\gamma\gamma) \end{array} $	210	116	174	9843

Table 1: Decay trees and their respective initial-final states.