The difference of reconstruction efficiency of photons and charged tracks between data and MC for $J/\psi \rightarrow \phi \eta$ study

Nefedov Yury, Bakina Olga, Boyko Igor, Wang Ping

November 2019

Introduction

Motivation

This is part of the systematic uncertainties estimations in measuring of the branching fraction of $J/\psi \rightarrow \phi \eta$ in the decay chain:

 ψ (3686) $\rightarrow \pi^+\pi^- J/\psi, \ J/\psi \rightarrow \phi\eta, \ \phi \rightarrow K^+K^-, \ \eta \rightarrow \gamma\gamma$

Essential parts of main analysis:

- We select events with two opposite charged soft pions with recoil mass of $M_{\pi^+\pi^-}^{rec} \in [3.092, 3.102] \text{ GeV}/c^2$
- We require two opposite charged kaons
- We require at least two photons
- \bullet We perform 5C kinematic constraints and choose two photons with minimal $\chi^2_{\rm 5C}$
- We select η for the invariant mass $M_{\gamma\gamma}^{inv}$
- We select ϕ for the invariant mass $M_{K^+K^-}^{inv}$

The most important components of systematic uncertainties

- Photon reconstruction efficiency
- Track reconstruction efficiency
- \bullet the resulting combined statistical error is 2.6%
- the value $2\times1\%$ as the estimation of systematic uncertainty for each of these efficiencies looks too big for this analysis
- we performed additional study to estimate difference in reconstruction efficiencies of eta and kaons between data and MC

Data & Monte-Carlo samples

- We used DST for $\psi(3686)$ 2009 and 2012
- We used $\psi(3686)$ inclusive Monte Carlo simulated data for 2009 and 2012 (official samples)
- We used two versions of the BOSS software
 - ▶ 6.6.4p1 for 2009: data and MC
 - ▶ 6.6.4p3 for 2012: data and MC

Study of η reconstruction efficiency

We used process: $\psi' \to \pi^+ \pi^- J/\psi$, $J/\psi \to \gamma \eta$, $\eta \to \gamma \gamma$

- $\pi^+\pi^-$ pair was selected with the same criteria as in main analysis
- no other charged tracks
- at least two photons with standard quality criteria
- there is no pair of photons from the π^0 decay
- the photon from J/ψ decay must be such that the recoil mass $M_{\pi^+\pi^-\gamma}^{rec} = \sqrt{(P_{ecm} P_{\pi^+} P_{\pi^-} P_{\gamma})^2}$ is about M_{η}
- we tag event as $J/\psi \rightarrow \gamma \eta$ decay if missing mass of $\pi^+\pi^-\gamma\gamma$ is close to 0 and the invariant mass of «missing photon» and the second photon is about M_η
- if the number of photons is more than two, we select two with a minimum missing mass
- $\bullet\,$ we checked whether γ was reconstructed or not

 $M_{inv}^2(\gamma\gamma)$

• π^0 suppression: we reject event if $0.013 < M_{inv}^2(\gamma\gamma) < 0.022 \; ({\rm GeV}/c^2)^2$

• selection of a photon from the decay J/ψ by recoil mass: $(M_{\pi^+\pi^-\gamma}^{rec})^2 = (P_{ecm} - P_{\pi^+} - P_{\pi^-} - P_{\gamma})^2$ • blue line – signal; red line – background • we select event if $0.1 < (M_{\pi^+\pi^-\gamma}^{rec})^2 < 0.5 (\text{GeV}/c^2)^2$

- missing mass of $\pi^+\pi^-\gamma\gamma$
- blue line signal; red line background
- we select event if $M_{missing}^2 < 0.002 \; ({
 m GeV}/c^2)^2$

Search for reconstructed photon

• blue line - signal; red line - background

• photon is found if $0.4 < rac{E_{\gamma}(\textit{pred})}{E_{\gamma}(\textit{rec})} < 1.8$ and $\delta \Theta(\textit{pred}-\textit{rec}) < 10^{\circ}$

Search for reconstructed η

after we find two photons, we require exactly the same conditions for η reconstruction as in the main analysis:

- we do 4C kinematic fit
- η is reconstructed if the invariant mass $|M_{\gamma\gamma}^{inv} M_{\eta}| < 0.024 \ {
 m GeV}/c^2$

Data vs Monte Carlo

- blue data 2012 red line inclusive MC 2012 normalized on data
- Momentum and $\cos(\Theta)$ distributions for fully and partially reconstructed η
- \bullet Purity for fully reconstructed is >99% for partially rec.: $\sim90\%$

Reconstruction efficiency: Data vs MC 2012

$$\epsilon = \frac{N_f}{N_f + N_p}$$

$$\frac{N_f - \text{all}}{\text{photons}}$$
(tracks)
reconstructed

$$\frac{N_p - \text{one}}{\text{photon}}$$
(track) is
missing

Reconstruction efficiency: Data vs MC 2009

$\psi' ightarrow \pi^+ \pi^- J/\psi, \ J/\psi ightarrow \gamma \eta$

- We see a difference in the angular distribution of η between data and MC
- Noticeable background especially for events with a lost photon (10%)
- Momentum of η is slightly higher than in $J/\psi \to \phi \eta$ process
- $\bullet\,$ Nevertheless, the ratio of efficiencies (data/MC) does not depend on the moment or on the angle of the η
- The ratio is 0.97 both in 2012 (\pm 0.01) and 2009 (\pm 0.016)

Verification is needed on another selection

Study of η reconstruction efficiency: $J/\psi \rightarrow \phi \eta$

$$\psi' \to \pi^+ \pi^- J/\psi, \quad J/\psi \to \phi \eta, \quad \eta \to \gamma \gamma, \quad \phi \to K^+ K^-$$

- $\pi^+\pi^-$ pair was selected with the same criteria as in main analysis
- exactly two oppositely charged kaons and no other tracks
- at least one photon with standard quality criteria
- there is no pair of photons from the π^0 decay
- invariant mass of kaons is about M_{ϕ}
- we tag event as $J/\psi \rightarrow \phi \eta$ decay if missing mass of $\pi^+\pi^-K^+K^-\gamma$ is close to 0 and the invariant mass of «missing photon» and the reconstructed photon is about M_η
- if the number of photons is more than one, we select one with a minimum missing mass
- $\bullet\,$ we checked whether γ was reconstructed or not

M²missing

- missing mass of $\pi^+\pi^-K^+K^-\gamma$
- blue line signal; red line background
- we select event if $M^2_{missing} < 0.002 \; ({
 m GeV}/c^2)^2$

Search for reconstructed photon: $J/\psi \rightarrow \phi \eta$

• blue line - signal; red line - background

• photon is found if $0.4 < rac{E_{\gamma}(\textit{pred})}{E_{\gamma}(\textit{rec})} < 1.8$ and $\delta \Theta(\textit{pred}-\textit{rec}) < 10^{\circ}$

Data vs Monte Carlo: $J/\psi \rightarrow \phi \eta$

- blue data 2012 red line inclusive MC 2012 normalized on data
- Momentum and $\cos(\Theta)$ distributions for fully and partially reconstructed η
- \bullet Purity for fully reconstructed is >99.5% for partially rec.: $\sim97\%$

Rec. efficiency of η in $J/\psi \rightarrow \phi \eta$: Data vs MC 2012

Rec. efficiency of η in $J/\psi \rightarrow \phi \eta$: Data vs MC 2009

Conclusion

Summary for η reconstruction efficiency

- For 2012, corrections to η reconstruction efficiency estimated in two decay channels coincide within one sigma error: $J/\psi \rightarrow \gamma \eta$: 0.971 \pm 0.009
 - $J/\psi
 ightarrow \phi\eta$: 0.992 \pm 0.014
- We plan to combine the results of these channels
- For 2009, statistics, especially in the $J/\psi \to \phi \eta,$ are too small
- Nevertheless, there is good agreement between 2012 and 2009, so we can use the result of 2012 with the corresponding error scaling
- $\checkmark~$ We have all components to evaluate the total systematic uncertainty $\checkmark~$ The result of the branching fraction for $J/\psi\to\phi\eta$ will be updated soon