

BARBARA PASSALACQUA

Measurement of the relative phase between EM and strong amplitudes in $\psi(2 S) \rightarrow p \bar{p}$
B. Passalacqua, M. Maggiora, M. Destefanis

OUTLINE

1. INTRODUCTION

- The BESIII Experiment
- Phase Measurement
- Initial State Radiation

2. DATA ANALYSIS

- Event Selection
- Radiative Corrections
- Simultaneous Fit
- Background Studies and Sistematic Uncertanties

3. RESULTS

- Cross Section
- Relative Phase

4. SUMMARY

INTRODUCTION

Phase Measurement

The relative phase measurement by means of the interference pattern of the $e^{+} e^{-}$reaction cross section as a function of the center of mass energy (W) near the resonance.

Process $e^{+} e^{-} \rightarrow$ hadrons around Charmonia
pQCD regime \longrightarrow all amplitudes are expected to be almost real

(a) A_{g} strong

(a) $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

Pure EM

(b)
(b) A_{γ} electromagnetic

(b) $e^{+} e^{-} \rightarrow 5 \pi$
EM + Strong

(c)
(c) $A_{E M} \equiv A_{\text {cont }}$ continuum
(c) $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$

Pure EM

$$
\sigma_{0} \cong \mid A_{g}(W)+A_{\gamma}(W) e^{i \phi_{g, E M}}+A_{c o n t}(W) e^{\left.i \phi_{g, E M}\right|^{2}}
$$

But experiments pointing to another direction for the $\mathrm{J} / / \Psi$

- e.g. J/ $\Psi \rightarrow p \bar{p} \quad \Phi=89^{\circ} \pm 8^{\circ}$
- e.g. J/ $\Psi \rightarrow \rho \pi \quad \Phi=106^{\circ} \pm 10^{\circ}$

Initial State Radiation

In a $e^{+} e^{-}$pair collision one or both leptons can eventually radiate one or more photons:
the radiated energy reduces the effective CM energy of the $e^{+} e^{-}$annihilation.

Cross section:
$\sigma=\frac{N}{L \varepsilon^{\prime}(1+\delta)}$

The probability of radiating an ISR photon is described by the radiator function $W\left(s, x, \theta_{\gamma}\right)$

- $\quad x$ is the fraction of the beam energy carried away by the ISR photon
- θ_{γ} is the angle of the photon.
- ISR photon energy ~50-100 MeV
- ISR correction factor $1+\delta \equiv \int_{0}^{1} \frac{\sigma(x)}{\sigma_{0}} W(x) d x$, where $x=1-\frac{E^{2}}{E_{0}^{2}}$

Check with ad-hoc generator

$p(k) d k=\beta k^{\beta-1} \quad$ probability distribution of the ISR photon The factor $\beta \cong 0.07$ is parametrized as:

$$
\beta=2 \frac{\alpha}{\pi}\left[\ln \left(\frac{Q^{2}}{m^{2}}\right)-1\right]
$$

DATA ANALYSIS

Event Selection

Data collected during the 2018 run around the $\psi(2 S)$ resonance ($3.4-3.8 \mathrm{GeV}$)

$$
B R(\psi(2 S) \rightarrow p \bar{p})=(2.94 \pm 0.08) \times 10^{-4}
$$

Beam Energies:

Nominal E $[\mathrm{MeV}]$	$\mathrm{E}[\mathrm{MeV}]$	$\sigma_{E}[\mathrm{MeV}]$	$\mathrm{L}\left[p b^{-1}\right]$
3580.0	3581.543	0.060	85.7
3670.0	3670.158	0.063	84.7
3681.0	3680.144	0.061	84.8
3683.0	3682.752	0.115	28.7
3684.0	3684.224	0.119	28.7
3685.5	3685.264	0.105	26.0
3686.6	3686.496	0.120	25.1
3690.0	3691.363	0.075	69.4
3710.0	3709.755	0.074	70.3

Kinematic cuts for the proton tracks:

- $\left|R_{x y}\right|<1 \mathrm{~cm},\left|R_{z}\right|<10 \mathrm{~cm}$
- $P \leq 2 \mathrm{GeV} / c$
- $\quad|\cos \theta|<0.8$
- $\quad E_{\text {show }} / P<0.5$ for protons

Cuts for both the proton and the antiproton tracks:

- $178^{\circ}<\theta_{p \bar{p}}<180^{\circ}, \theta_{p \bar{p}}$ is the polar angle between the two tracks $p \bar{p}$ in the CM frame
- PID tags selecting proton and antiproton
- $1.4 \mathrm{GeV} / c<P_{p \bar{p}}<1.7 \mathrm{GeV} / c$

Selections optimization:

- Barrel region
- Back to back and charged tracks

MonteCarlo Simulations $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow p \bar{p}$

N of generated event: 10000

Generator:

BesEvtGen
Transport:
Geant4

$$
\begin{aligned}
& p \bar{p} \text { angle } \\
& \mathrm{E}=3.580 \mathrm{GeV}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{E_{\text {show }}}{p} \text { for proton } \\
& E=3.580 \mathrm{GeV}
\end{aligned}
$$

$\frac{E_{\text {show }}}{p}$ for antiproton
$\mathrm{E}=3.580 \mathrm{GeV}$

$$
\text { J2BB1 Model: } \quad \frac{d|M|^{2}}{d \cos \theta} \propto\left(1+\alpha \cos ^{2} \theta\right) \quad \alpha=0.68
$$

Efficiency

Values of reconstructed events obtained from the Montecarlo simulations

Nominal Energy $[\mathrm{MeV}]$	$N_{\text {reconstructed }}$	Efficiency	Error Efficiency
3580.0	110	0.7025	0.0038
3670.0	180	0.7002	0.0038
3681.0	257	0.6941	0.0038
3683.0	304	0.6981	0.0038
3684.0	1408	0.6959	0.0038
3685.5	3113	0.6944	0.0038
3686.6	2955	0.6998	0.0038
3690.0	622	0.6952	0.0038
3710.0	300	0.6951	0.0038

The statistical uncertainty is estimated as binomial:

$$
\frac{\sigma_{\varepsilon}}{\varepsilon}=\sqrt{\frac{1-\varepsilon}{N_{g e n}}}
$$

Event Selection - Real data $e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow p \bar{p}$
BESIII

Proton momentum spectra: no cuts applied
: 3.580

Radiative Corrections

In central production process:

$$
\beta=4 \frac{\alpha}{\pi}\left[\ln \left(\frac{W_{1}}{m_{e}}\right)-0.5\right]
$$

Preliminary distribution of proton momentum after ISR, private algorithm for simulation at 3.710 GeV

According to Touscheck, the correction factor is:

$$
C=\left|1-E_{n}^{(1-\beta)}+0.5 E_{n}^{(2-\beta)}\right|
$$

Where $E_{n}=k / R$
The energy after ISR:

$$
W_{2}=\sqrt{W_{1}^{2}-2 k W_{1}}
$$

- Simulated angular distribution $\propto 1+\alpha \cos ^{2} \theta$ where $\alpha=0.68$
- Photon ISR energy $\left\langle E_{\gamma}\right\rangle \sim 100 \mathrm{keV}$
- Collinearity: usually $\theta_{\text {DIFF }} \sim 4^{\circ}$,
where $\theta_{\text {DIFF }}=180^{\circ}-\theta_{\text {afterISR }}$

Number of event generated: 10000
Simultaneous Fit

Signal distribution:
Crystal Ball
Background:
Polynomial function

$$
\begin{gathered}
\\
N_{e v}=I \cdot N_{s i g} \\
\sigma=\sqrt{N_{e v}}
\end{gathered}
$$

p momentum
$\mathrm{E}=3.580 \mathrm{GeV}$
MonteCarlo Simulations

p momentum
$\mathrm{E}=3.580 \mathrm{GeV}$
Real dataset

p momentum
$\mathrm{E}=3.6866 \mathrm{GeV}$
Real dataset

Background Studies

N of event generated: 10000

Generator:

KKMC
Transport: Geant4
$e^{+} e^{-} \rightarrow J / \psi \rightarrow p \bar{p}$
$e^{+} e^{-} \rightarrow e^{+} e^{-}$
$\mathrm{E}=3.684 \mathrm{GeV}$
Simulations - PHSP Model

$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
$\mathrm{E}=3.684 \mathrm{GeV}$,
Simulations - PHSP Model

Invariant mass
$\mathrm{E}=3.670 \mathrm{GeV}$
Real dataset

Sistematic Uncertanties

Variations on the selection criteria:

Cut	Value	Variation
$E_{\text {show }} / p$	0.5	± 0.05
$\theta_{p \bar{p}}$	$178^{\circ} \ll 180^{\circ}$	-0.5° and $+1^{\circ}$
fit	$-3 \sigma \ll 3 \sigma$	± 0.5
PID	0.00	+0.001

Fit routine

- Simultaneous fit
- Sideband method

Considering the variables as uncorrelated:

$$
N_{0}=N-\frac{1}{2} B+\frac{1}{4} A
$$

Sistematic Uncertanties

BESIII

Number of events and their error for each number of $p \bar{p}$ pairs variation and total systematic error:

Energy $[\mathrm{MeV}]$	N_{E}	σ_{E}	N_{T}	σ_{T}	$N_{P I D}$	$\sigma_{P I D}$	N_{F}	σ_{F}	$\sigma_{\text {tot }}$
3580.0	80.03	5.19	6.05	0.94	80.55	8.97	93.51	5.36	9.84
3670.0	62.77	4.57	10.94	2.54	62.77	7.92	122.54	5.23	9.28
3681.0	537.38	13.38	27.02	3.29	537.38	23.18	531.39	13.11	25.11
3683.0	349.42	10.80	12.73	2.38	350.28	18.72	349.87	10.71	20.31
3684.0	1381.20	21.54	5.17	1.66	1396.93	37.38	1405.44	21.23	40.20
3685.5	3076.45	32.09	45.88	4.06	3097.80	55.66	3126.30	31.87	60.09
3686.6	2938.12	31.29	31.07	3.83	2094.12	54.17	3125.32	31.58	58.82
3690.0	736.47	15.68	21.02	2.83	740.49	27.21	752.39	15.43	29.37
3710.0	236.59	8.87	53.67	3.44	236.59	15.38	259.07	8.91	16.97

$E \equiv \frac{E_{\text {show }}}{p} \quad T \equiv \theta_{p \bar{p}} \quad F \equiv$ fit

RESULTS

Cross Section

$\sigma=\frac{N_{p \bar{p}}}{L \varepsilon}$
N number of $p \bar{p}$ pairs
L integrated luminosity
ε efficiency

Cross section for each CM energy with their statistical and systematic error

Nominal Energy $[\mathrm{MeV}]$	$\sigma[p b]$	$\sigma_{\text {stat }}[p b]$	$\sigma_{\text {syst }}[p b]$
3580.0	1.43	0.16	0.23
3670.0	1.14	0.14	0.22
3681.0	9.66	0.42	0.58
3683.0	18.68	1.00	1.40
3684.0	74.01	1.98	2.79
3685.5	181.42	3.26	4.59
3686.6	177.80	3.28	4.66
3690.0	16.23	0.59	0.84
3710.0	5.13	0.33	0.47

Observed cross section for the $\mathrm{p} \bar{p}$ final states
Error bars include both statistical and systematic uncertanties

Relative Phase

The cross section can be written as:

$$
\sigma[n b]=\left|\sqrt{12 \pi B_{\text {in }} B_{\text {out }}\left[\frac{\hbar c}{W}\right]^{2} \cdot 10^{7}} \frac{C_{1}+C_{2} e^{i \phi}}{M_{\psi}-W-i \frac{\Gamma}{2}}+C_{3} e^{i \phi}\right|^{2}
$$

Where C_{1}, C_{2} and C_{3} are the three parameters which correspond to the $A_{3 g}, A_{\gamma}$ and $A_{E M}$

- Multiple extraction to simulate ISR effects
- Cross section calculated at each extraction
$\longrightarrow \sigma=\frac{1}{N_{\text {ext }}} \sum \sigma_{i}$
First generation measurement
Relative Phase: $\quad \phi=(89.05 \pm 14.70)^{\circ}$
Branching Ratio: $B_{\text {out }}=(3.06 \pm 0.07) \times 10^{-4}$

$$
B_{P D G}=(2.94 \pm 0.08) \times 10^{-4}
$$

Cross section at the continuum: $\sigma_{c}=(7.54 \pm 1.12) p b$

Summary

$01 e^{+} e^{-} \rightarrow \psi(2 S) \rightarrow p \bar{p}$ Event Selection

02
Simultaneous fit of momentum spectra

03
Background studies and Systematic uncertanties

Cross section

Relative Phase:

$$
\phi=(89.05 \pm 14.70)^{\circ}
$$

and Branching Fraction

$$
B_{\text {out }}=(3.06 \pm 0.07) \times 10^{-4}
$$

06
Next steps:

- Energy optimization
- New data

BESIII

BARBARA PASSALACQUA

Thanks!

BACKUP SLIDES

A proposal: Quarkonium OZI breaking decay as Freund and Nambu

Considering quarkonium as a superposition of a narrow resonance v_{O}, not directly decay into hadrons, and a wide resonance, a glueball O , not coupled to leptons but strongly coupled to hadrons:

Scheme of the process iterated in f, where f is the coupling between v and O

$$
\begin{aligned}
& A_{\text {strong }}=\frac{\sqrt{\Gamma_{e e}} M_{V} M_{O} f \sqrt{\Gamma_{O}}}{\left(M_{V}^{2}-W^{2}-i M_{V} \Gamma_{V}\right)\left(M_{O}^{2}-W^{2}-i M_{O} \Gamma_{O}\right)-M_{V} M_{O} f^{2}} \\
& \text { assuming } \quad \Gamma_{0} \gg \Gamma_{J / \psi}, f^{2} \sim \Gamma_{0}\left(\Gamma_{J / \psi}-\Gamma_{\mathrm{V}}\right) \\
& A_{\text {strong }} \sim \frac{(i) \sqrt{B_{e e}} M_{V} f \sqrt{B_{h}}}{M_{J / \Psi}^{2}-W^{2}-i M_{J / \Psi} \Gamma_{J / \Psi}} \quad A_{e m}=\frac{\sqrt{B_{e e}} M_{V} \Gamma_{J / \Psi} \sqrt{B_{e m}}}{M_{J / \Psi}^{2}-W^{2}-i M_{J / \Psi} \Gamma_{J / \Psi}} \\
& \text { Cross section of } J / \psi \text { reproduced with } \\
& |f| \sim 0.012 \mathrm{GeV} \\
& M_{O} \sim M_{J / \psi} \cong 3.096 \mathrm{GeV} \\
& \Gamma_{O} \sim 0.5 \mathrm{GeV}
\end{aligned}
$$

Dynamics of the Zweig- Izuka Rule and a New Vector Meson below $2 \mathrm{GeV} / \mathrm{c}^{2}$, Peter G. O. Freund and Yoichiro Nambu Phys. ReV. Lett. 34, 1645
R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997)

Was an interference already seen?

Yes, without the strong contribution
J.Z. Bai et al., Phys. Lett. B 355, 374-380 (1995)

Radiator function

$$
W(s, x)=\Delta \beta x^{\beta-1}-\frac{\beta}{2}(2-x)+\frac{\beta^{2}}{8}\left((2-x)(3 \ln (1-x)-4 \ln x)-4 \frac{\ln (1-x)}{x}-6+x\right)
$$

where

$$
\begin{aligned}
& L=2 \ln \frac{\sqrt{s}}{m_{e}} \\
& \Delta=1+\frac{\alpha}{\pi}\left(\frac{3}{2} L+\frac{1}{3} \pi^{2}-2\right)+\left(\frac{\alpha}{\pi}\right)^{2} \delta_{2} \\
& \delta_{2}=L^{2}\left(\frac{9}{8}-2 \xi_{2}\right)-L\left(\frac{45}{16}-\frac{11}{2} \xi_{2}-3 \xi_{3}\right)-\frac{6}{5} \xi_{2}^{2}-\frac{9}{2} \xi_{3}-6 \xi_{2} \ln 2+\frac{57}{12} \\
& \beta=\frac{2 \alpha}{\pi}(L-1), \quad \xi_{2}=1.64493407, \quad \xi_{3}=1.2020569
\end{aligned}
$$

The angular distribution of the ISR photon is described by:

$$
P\left(\theta_{\gamma}\right)=\frac{\sin ^{2} \theta_{\gamma}-\frac{x^{2} \sin ^{4} \theta_{\gamma}}{2\left(x^{2}-2 x+2\right)}}{\left(\sin ^{2} \theta_{\gamma}+\frac{m^{2}}{E^{2}} \cos ^{2} \theta_{\gamma}\right)^{2}}-\frac{\frac{m^{2}(1-2 x) \sin ^{2} \theta_{\gamma}-x^{2} \cos ^{4} \theta_{\gamma}}{E^{2}}}{\left(x^{2}-2 x+2\right)}
$$

Crystal Ball function

$$
f(x, \alpha, n, \bar{x}, \sigma)=N \begin{cases}\exp \left(-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right) & \text { for } \frac{x-\bar{x}}{\sigma}>-\alpha \\ A\left(B-\frac{x-\bar{x}}{\sigma}\right)^{n} & \text { for } \frac{x-\bar{x}}{\sigma} \leq-\alpha\end{cases}
$$

where

$$
\begin{aligned}
A & =\left(\frac{n}{|\alpha|}\right)^{n} \exp \left(-\frac{|\alpha|^{2}}{2}\right) \\
B & =\frac{n}{|\alpha|}-|\alpha| \\
N & =\frac{1}{\sigma(C+D)} \\
C & =\frac{n}{|\alpha|} \frac{1}{n-1} \exp \left(-\frac{|\alpha|^{2}}{2}\right) \\
D & =\sqrt{\frac{\pi}{2}}\left(1+\operatorname{erf}\left(\frac{|\alpha|}{\sqrt{2}}\right)\right)
\end{aligned}
$$

The cross section can be written as:

$$
\sigma[n b]=\left|\sqrt{12 \pi B_{\text {in }} B_{\text {out }}\left[\frac{\hbar c}{W}\right]^{2} \cdot 10^{7}} \frac{C_{1}+C_{2} e^{i \phi}}{M_{\psi}-W-i \frac{\Gamma}{2}}+C_{3} e^{i \phi}\right|^{2}
$$

Where C_{1}, C_{2} and C_{3} are the three parameters which correspond to the $A_{3 g}, A_{\gamma}$ and $A_{E M}$ The Real and the Imaginary part of the cross section AA and BB respectively, can be defined as:

$$
\begin{aligned}
& A A=\sqrt{C_{0}} \frac{\left(C_{1}+C_{2} \cos \phi\right)-\left(M_{\psi}-W\right)+C_{2} \Gamma / 2 \sin \phi}{\left(M_{\psi}-W\right)^{2}+(\Gamma / 2)^{2}}+C_{3} \cos \phi \\
& \mathrm{BB}=\sqrt{C_{0}} \frac{\left(C_{1}+C_{2} \cos \phi\right) \Gamma / 2+C_{2} \sin \phi}{\left(M_{\Psi}-W\right)^{2}+(\Gamma / 2)^{2}}+C_{3} \sin \phi
\end{aligned}
$$

For each extraction the cross section is:

$$
\sigma_{i}=A A^{2}+B B^{2}
$$

The final value of the simulated cross section is:

$$
\sigma=\frac{1}{N_{e s t}} \sum \sigma_{i}
$$

The BESIII Experiment

Where? Beijing in People's Republic of China (PRC)
BESIII Collaboration now has ~ 500 members from 72 institution
from 15 countries, including IHEP and INFN

Beijing Electron Positron Collider II (BEPCII)

- Beam energy: $1.0-2.3 \mathrm{GeV} / \mathrm{c}$
- Design Luminosity: $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Center of mass energy: ranging 2.0-4.6 GeV
- Circumference: 237 m

Physics of BESIII

Charmonium, D, τ, Light Hadron Spectroscopy and search for New Hadronic states

BEijing Spectrometer III (BESIII)

- Drift chamber (MDC), momentum resolution for charged particles is 0.5% at 1 GeV
- Electromagnetic calorimeter EMC, energy resolution* 2.5% and position resolution* 6 mm
- Time of Flight system (TOF), time resolution* 80 ps
- Solenoid magnet providing a 1.0 Tesla magnetic field
- Muon Chamber System (MUC) made of Resistive Plate Chamber
- Geometrical acceptance 93% of 4π
*in the barrel

Physics at BESIII , Asner D. M. et al. Int. J. Mod. Phys A24 (2009) S1-794 arXiv: 0809.1869 [hep - ex]

