粒子物理学的自旋极化 Lecture 6

平荣刚 (中国科学院高能物理研究所) pingrg@ihep.ac.cn

2019-10-8, 兰州大学物理学院

Test CP symmetry in hyper decays at BESIII

Beijing Electron Positron Collider (BEPC)

beam energy: 1.0 – 2.3 GeV

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

• 1989-2004 (BEPC):

L_{peak}=1.0x10³¹ /cm²s

• 2009-now (BEPCII):

L_{peak}=1.0x10³³/cm²s

BESIII J/ψ data sets

Total 10.047 billion J/ψ decays we have

Role of polarization physics

• Probing of spin degree freedom Test the dynamic of SM and low energy hadron interaction

Existant exp. : RHIC, Jlab, GRAAL, CERN and DESY Spin observable, spin-dependent structure function and parton distribution Spin crisis at eighties

- BEPCII/BESIII, unpolarized beam, inaccessible polarization of final state by BESIII
 - Polarized beam for post-BEPCII options, CPV in tau decay, Hyperon weak decay,.....
 - > Useful tool: transverse polarization of hyperon, spontaneous production at e^+e^- collision
 - > $\Lambda \rightarrow p\pi^-$ decay plays important role in particle physics

Classic paper

Phys. Rev. D34, 833 (1986)

Hyperon decays and CP nonconservation

John F. Donoghue

Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 9 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the *CP*-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and leftright-symmetric models of *CP* nonconservation.

C- and P- transformation

ancient history

Phys. Rev. Lett. 24, 843 (1970)

ASYMMETRY PARAMETER FOR $\Lambda^0 \rightarrow n\pi^0 \dagger^*$

S. Olsen, L. Pondrom, R. Handler, and P. Limon[‡] University of Wisconsin, Madison, Wisconsin 53706

and

J. A. Smith and O. E. Overseth University of Michigan, Ann Arbor, Michigan 48104 (Received 18 February 1970)

The asymmetry parameter α_0 for $\Lambda^0 \rightarrow n\pi^0$ has been measured relative to α_- by comparing the neutron distribution with the proton distribution from the decay $\Lambda^0 \rightarrow p\pi^-$ for polarized Λ^0 hyperons. A sample of 4760 neutron decay events and 8500 proton decay events gave $\alpha_0/\alpha_-=1.000\pm0.068$ in good agreement with the $|\Delta \mathbf{I}| = \frac{1}{2}$ rule.

Phys. Rev. Lett. 24, 165 (1970)

PROTON POLARIZATION IN $\Sigma^* - p\pi^0 \dagger^*$

F. Harris and O. E. Overseth University of Michigan, Ann Arbor, Michigan 48104

and

L. Pondrom and E. Dettmann University of Wisconsin, Madison, Wisconsin 53706 (Received 10 November 1969)

The polarization of protons from the decay of polarized Σ^+ hyperons has been measured by scattering the protons in a carbon-plate spark chamber. A sample of 1335 use-ful scatters gave $\alpha_0 = -0.98 \pm 0.05$ and $\varphi_0 = 22^\circ \pm 90^\circ$, where $\tan \varphi_0 = \beta_0/\gamma_0$. Using the data on $\Sigma^+ \rightarrow n\pi^+$ and $\Sigma^- \rightarrow n\pi^-$ and fitting to the $|\Delta \overline{1}| = \frac{1}{2}$ rule gave $\chi^2 = 0.3$ for 2 degrees of freedom.

Phys. Rev. 184, 1663 (1969)

Final-State Interactions in Nonleptonic Hyperon Decay

O. E. OVERSETH* The University of Michigan, Ann Arbor, Michigan 48104

AND

S. PAKVASA† University of Hawaii, Honolulu, Hawaii 96822 (Received 1 April 1969)

We discuss the consequences of including the final-state interactions in the analysis of Λ° , Σ , and Ξ nonleptonic decays. Emphasis is on the role that the final-state interactions play in tests for T invariance, in tests of the $\Delta I = \frac{1}{2}$ rule (including the resolution of sign ambiguities), and in the determination of the decay amplitudes for these processes.

Previous Measurements

2018 PDG list

$lpha_- \ {\sf FOR} \ {f \Lambda} o p \pi^-$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.642 ± 0.013	OUR AVERAGE				
0.584 ± 0.046	8500	ASTBURY	1975	SPEC	
0.649 ± 0.023	10325	CLELAND	1972	OSPK	
0.67 ± 0.06	3520	DAUBER	1969	HBC	From Ξ decay
0.645 ± 0.017	10130	OVERSETH	1967	OSPK	$Λ$ from $π^-p$
0.62 ± 0.07	1156	CRONIN	1963	CNTR	$Λ$ from $π^-p$

$lpha_+ \ {f FOR} \ {\overline \Lambda} o {\overline p} \pi^+$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$\mathbf{-0.71} \pm 0.08$	OUR AVERAGE				
$-0.755 \pm 0.083 \pm 0.063$	pprox 8.7k	ABLIKIM	2010	BES	$J/\psi ightarrow \Lambda \overline{\Lambda}$
-0.63 ± 0.13	770	TIXIER	1988	DM2	$J/\psi ightarrow \Lambda \overline{\Lambda}$

Previous Measurements

2018 PDG list

$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda \to \ p \pi^-$, $\overline{\Lambda} \to \ \overline{p} \pi^+$					
Zero if CP is co	onserved; α_{\perp} a	nd $lpha_+$ are the a	asymme	try parai	meters for $\Lambda ightarrow p\pi^-$
and $\overline{\Lambda} \rightarrow \overline{p} \pi^+$	decay. See als	so the Ξ^- for a	similar	test inv	olving the decay chain
$\Xi^- ightarrow \Lambda \pi^-$, ,	$\Lambda ightarrow p\pi^{-}$ and	the correspondi	ng antip	oarticle o	chain.
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.006 ± 0.021 OUR	AVERAGE				
$-0.081\pm0.055\pm0.05$	9 $pprox$ 8.7k	ABLIKIM	10	BES	$J/\psi ightarrow \Lambda \overline{\Lambda}$
$+0.013 \pm 0.022$	96k	BARNES	96	CNTR	LEAR $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$
$+0.01 \pm 0.10$	770	TIXIER	88	DM2	$J/\psi ightarrow \Lambda \overline{\Lambda}$
-0.02 ± 0.14	10k	¹ CHAUVAT	85	CNTR	pp, pp ISR
• • • We do not use	the following d	ata for averages,	, fits, lir	nits, etc.	
-0.07 ± 0.09	4063	BARNES	87	CNTR	See BARNES 96
¹ CHAUVAT 85 actually gives $\alpha_{+}(\overline{\Lambda})/\alpha_{-}(\Lambda) = -1.04 \pm 0.29$. Assumes polarization is same in $\overline{p}p \rightarrow \overline{\Lambda}X$ and $pp \rightarrow \Lambda X$. Tests of this assumption, based on <i>C</i> -invariance and fragmentation, are satisfied by the data.					

Hyperon decay parameters @ BESIII

$$e^+e^-
ightarrow J/\psi
ightarrow \Lambda \overline{\Lambda}
ightarrow p \overline{p} \pi^+ \pi^-$$

Event selection:

- $\checkmark\,$ No PID request for charged tracks
- ✓ $\Lambda/\overline{\Lambda}$ reconstructed with second vertex fit
- ✓ Events reconstructed with kinematic fit

Hyperon decay parameters @ BESII

$$e^{+}e^{-} \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow p \overline{p} \pi^{+} \pi^{-}$$
G. Faldt and A. Kupsc
PLB,772, 16 (2017)
EPJA, 52, 141 (2016)
EPJA, 51, 74 (2015).

$$\frac{d\sigma}{d\Omega} \propto T_{0} + \sqrt{1 - \alpha_{J/\psi}^{2}} \sin(\Delta)(\alpha_{\Lambda}T_{3} + \alpha_{\overline{\Lambda}}T_{4})$$

$$+ \alpha_{\Lambda}\alpha_{\overline{\Lambda}}[T_{1} + \sqrt{1 - \alpha_{J/\psi}^{2}} \cos(\Delta)T_{2} + \alpha_{J/\psi}T_{5}],$$
To: angular distribution of Λ and $\overline{\Lambda}$
T₃, T₄, transverse polarization
T₁, T₂, T₅: spin correlation
 $\overline{z_{1}}$
 $\overline{z_{1}}$
 $\overline{\lambda}$
 $\overline{x_{1}}$
 $e^{-J/\psi}$
 $\overline{\lambda}$
 e^{+}
 $\overline{x_{1}}$
 $\overline{z_{1}}$
 $\overline{\lambda}$
 $\overline{z_{1}}$

$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow p \bar{p} \pi^+ \pi^-, \ p \bar{n} \pi^- \pi^0$

Results of simultaneous fit to two data sets

Systematic uncertainties

- Challenge to estimate detector asymmetry in tracking, and kinematic fit
- Systematic uncertainties well controlled Relative systematic uncertainties (%)

Source	$lpha_\psi$	α_{-}	α_+	$ar{lpha}_0$	$\Delta \Phi$
Tracking, π^0 , \bar{n}	1.5	0.1	0.3	0.6	1.1
Kinematic fit	0.2	0.1	0.8	0.6	0.0
Fit method	0.0	0.5	0.4	0.4	0.1
Total	1.5	0.5	0.9	0.8	1.1

• Justify results with $J/\psi \to \Xi^- \overline{\Xi}^+ \to \Lambda \overline{\Lambda} \pi^+ \pi^- \to p \overline{p} 2(\pi^+ \pi^-)$

BESIII, arXiv: 1808.08917, Nature Phys. 15 (2019) 631-634

Quick response from PDG2019

α_{-} FOR $\Lambda \rightarrow p\pi^{-}$ 2019 PDG list

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.750 \pm 0.009 \pm 0.004$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$
••• We do not use the	following dat	ta for averages, fi	ts, limits, o	etc. • • •	
0.584 ± 0.046	8500	ASTBURY	1975	SPEC	
0.649 ± 0.023	10325	CLELAND	1972	OSPK	
0.67 ± 0.06	3520	DAUBER	1969	HBC	From <i>Ξ</i> decay
0.645 ± 0.017	10130	OVERSETH	1967	OSPK	$arLambda$ from $\pi^- p$
$0.62\pm\!0.07$	1156	CRONIN	1963	CNTR	$arLambda$ from $\pi^- p$

 $lpha_+ \; \mathsf{FOR} \; \overline{oldsymbol{\Lambda}} o \overline{oldsymbol{p}} \pi^+$

VALUE	EVTS	DOCUMENT	T ID	TECN	COMMENT
$-0.758 \pm 0.010 \pm 0.007$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$
• • • We do not use the	following	data for averag	es, fits, limits,	etc. • • •	
$-0.755 \pm 0.083 \pm 0.063$	pprox 8.7k	ABLIKIM	2010	BES	$J/\psi o \Lambda \overline{\Lambda}$
-0.63 ± 0.13	770	TIXIER	1988	DM2	$J/\psi o A\overline{A}$

Where does the TP come from?

- From the e⁺/e⁻ beam ?
 X No, BEPC beams unpolarized
- From the e⁺/e⁻ natural polarization when circulating in the BEPCII storage ring ?

imes Sokolov-Ternov effects: 4.3 hs $@\psi'$ peak, but beam lifetime ~ 2.0 hs

• From the J/ψ spin transfer ?

✓ Yes, it does from the J/ψ tensor polarization

 J/ψ polarization: $\mathcal{P}_z = 0$, $T_{zz} = \frac{1}{\sqrt{6}}$

 Λ transverse polarization:

$$\mathcal{P}_{y} = \sqrt{6} \frac{T_{zz} \sin \theta \cos \theta \sin \Delta \sqrt{1 - \alpha_{\psi}^{2}}}{1 + \alpha_{\psi} \left[\frac{1}{3} + \frac{1}{\sqrt{6}} T_{zz} (1 + 3\cos 2\theta)\right]}$$

 \mathcal{P}_y manifest if $\sin \Delta \neq 0$

CPV observables in Ξ^- decay

decay rate difference $\frac{\Gamma_{\Lambda\pi^+} - \Gamma_{\Lambda\pi^-}}{\Gamma} \equiv 0$ $\bigstar \pi$ final states are purely Ispin=1, only $\Delta I = 1/2$ transitions allowed, no $\Delta I=3/2$ transition possible decay asymmetry $\alpha_{\Box} = \pm \frac{2 \operatorname{Re}(S * P)}{|S|^{2} + |P|^{2}} = \pm \frac{2 |S||P| \cos(\Delta_{S} \pm \phi_{CP})}{|S|^{2} + |P|^{2}}$ difference $\frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}} = \frac{\sin \Delta_{S} \sin \phi_{CP}}{\cos \Delta_{S} \cos \phi_{CP}} = \tan \Delta_{S} \tan \phi_{CP}$ ($\Delta_{s} = \delta_{S} - \delta_{P}$) is measureable (see below) $\beta_{\Box} = \pm \frac{2 \operatorname{Im}(S * P)}{|S|^{2} + |P|^{2}} = \pm \frac{2|S||P|\sin(\Delta_{S} \pm \phi_{CP})}{|S|^{2} + |P|^{2}}$ final-state polarizati $\frac{\beta_{-} - \beta_{+}}{\alpha_{-} - \alpha_{+}} = \frac{\sin \Delta_{s} \cos \phi_{CP}}{\cos \Delta_{s} \cos \phi_{CP}} = \tan \Delta_{s}$ $\begin{array}{c} \text{cancels out} \\ \text{measures the strong} \\ \text{for } \Xi \text{ over } \Lambda \end{array}$ on difference phase

CPV with $J/\psi \to \Xi^-(\Lambda \pi^-)\overline{\Xi}^+(\Lambda \pi^+)$ +c.c.

缺点:

complicated topology: 9-dimensions $\theta_{\Xi}, \theta_{\Lambda}, \phi_{\Lambda}, \theta_{\overline{\Lambda}}, \phi_{\overline{\Lambda}}, \theta_p, \phi_p, \theta_{\overline{p}}, \phi_{\overline{p}}$ 72 terms, 8 parameters to determine

Low rate compared to $\Lambda\overline{\Lambda}$ 1.3B J/ ψ : 420K $\Lambda(p\pi^{-})\overline{\Lambda}(\overline{p}\pi^{+})$ evts 61K $\Xi(\Lambda\pi^{-}) \Xi(\Lambda\pi^{-})$

优点:

- $\Lambda\overline{\Lambda}$ polarizations are measureable via their parityviolating $p\pi^{-}(p\pi^{+})$ decays;
- β_{-} and β_{0} parameters can be determined.
- Preliminary results indicate that the Ξ s are even more polarized than the Λ s.

<u>Σ+</u>?

α_0 FOR Σ^+ -	$\rightarrow p\pi^0$					
VALUE	<u>EVTS</u>	DOCUMENT ID				
$-0.980^{+0.017}_{-0.015}$ OUR FIT						
$-0.980\substack{+0.017\\-0.013}$	OUR AVERAGE					
$-0.945 \substack{+ 0.055 \\ - 0.042}$	1259	¹⁵ LIPMAN	73			
-0.940 ± 0.045	16k	BELLAMY	72			
$-0.98 \ +0.05 \ -0.02$	1335	¹⁶ HARRIS	70			
-0.999 ± 0.022	32k	BANGERTER	69			

Δ

Σ^+ DECAY MODES

<i></i>	Mode	Fraction (Γ_i/Γ)
Γ_1	$p\pi^0$	(51.57±0.30) %
Γ2	$n\pi^+$	(48.31±0.30) %

$\Gamma(\Sigma^+ \to n\ell^+ \nu)/\Gamma$ Test of $\Delta S = \Delta$	$\Sigma^{-} \rightarrow \mathbf{n}$	<i>!</i> − <i>v</i>)
VALUE	EVTS	DOCL
<0.043 OUR LIMIT	Our 90% Cl	_ limit,

50 year-old measurements, probably wrong for the same reason the Λ measurements were wrong

$\alpha_0 \approx 1 \rightarrow S$ -wave $\approx P$ -wave interference is maximum well suited for $\alpha_0 + \alpha_0 / \alpha_0 - \alpha_0$

No measurements of α_0 or α_-

 $\Delta\Gamma$ will be suppressed

PDG 2018 $\Delta S = \Delta Q$ limit is not severe, **BESIII** can probably improve on this by a large factor

Harris et al., α_0 parameter in $\Sigma^+ \rightarrow p\pi^0$ decays

Σ-?

α_{-} FOR $\Sigma^{-} \rightarrow \mu$	$n\pi^{-}$	
VALUE	<u>EVTS</u>	<u>DOCUI</u>
-0.068 ± 0.008 OUR	AVERAGE	
-0.062 ± 0.024	28k	HANS
-0.067 ± 0.011	60k	BOGE
$-0.071 {\pm} 0.012$	51k	BANG

DOCUMENT ID	
HANSL	78
BOGERT	70
BANGERTER	69

Σ^- decay modes

	Mode	Fraction (Γ_i/Γ)
Γ1	nπ	(99.848±0.005)%

40~50 year-old measurements,

probably wrong for the same reason the Λ measurements were wrong

$\alpha_0 \approx 0 \rightarrow 1$ partial wave dominates interference is small not

well suited for $\alpha_+\alpha_+/\alpha_--\alpha_+$ measurements

no measurements of $\alpha_{\scriptscriptstyle +}$

single dominant decay mode no suitable for $\Delta\Gamma$ measurements

Ω-?

Ω^- DECAY MODES

α FOR Ω	$P^- \rightarrow \Lambda K^-$					Mode	Fraction (Γ_i/Γ)
Some early results have been omitted.					<u>г.</u>	NK-	(67.0+0.7) 9/
<u>VALUE</u>		EVTS	DOCUMENT ID			-0 -	(07.8±0.7) %
	0.0024 OUR AVE			05	L ₂	$= \pi$	(23.6±0.7) %
$\pm 0.0207 \pm$	0.0051 ± 0.0061	900K	7 I II	05	Г3	$\Xi^{-}\pi^{0}$	(8.6±0.4) %
$\pm 0.0170 \pm$	0.0019 ± 0.0010	4.5101	LU	USA			
	<u>0-</u> _ =0 _ -	-					
VALUE		EVTS	DOCUMENT ID		1	$\Gamma(\Xi^0\pi^-) = (2$	$74 + 0.15$ x $\Gamma(\Xi^{-}\pi^{0})$
	14	1630		84			
40.09 T (1030	DOONQOIN	04		Δ l=1/2 rule	expectation: ≈ 2 : $\bigstar T_{3/2}$
~ FOR	$0^- \rightarrow = \pi^0$	D			2	2015 T.	· · · · · · · · · · · · · · · · · · ·
VALUE		EVTS	DOCUMENT ID		-	1/2	
) 21	614	BOUROUIN	84		$\Delta \Gamma$ will be e	enhanced (compared to
+0.05 ± (014	DOORQOIN	04		٨٥	this $\Delta_{1}=\delta_{2}/2-\delta_{1}/2$
					1	13/	
$\alpha \approx 0 \rightarrow 1$ partial wave dominates							
$Bf(\Omega^{-} \to \Xi^{-}\pi^{0}) Bf(\Omega^{+} \to \Xi^{+}\pi^{0}) f(\Omega^{+} \to \Xi^{0}) f(\Omega^{+} \to \Xi^{0}$							
all modes					$Rf(\Omega^{-} \to \Xi^{0})$	$\overline{\pi^{-}}$ $\overline{Rf}(\overline{O}^{+} \times \overline{\Xi}^{0})$	$\frac{1}{\pi^{-1}} = 2 \left(1 + \sqrt{2} \right) \left(\frac{32}{T} \right) \sin \Delta_s \sin \varphi_{CP}$
	. – .	_			$Df(SZ \rightarrow \Box)$	$n D \int (S 2 \rightarrow C)$	<i>n</i>) (<i>1</i> /2)
interference is small, not well							L ₁
batius							
for $\alpha + \alpha/\alpha \Box \alpha$ measurements Serisitivity is							
BESIII should check all these measurements reduced but							
reduced but							
only by a factor of							
						••••	, -, -, -, -, -, -, -, -, -, -, -, -, -,
							~() 7

EPR paradox test using charmonium decays

Einstein-Podolsky-Rosen (EPR) paradox

- EPR paradox^[1] (1935) initiated an intense discussion on the philosophical foundations of quantum mechanics.
- Physics quantity corresponding to "element of reality" can be predicted without any uncertainty.

Albert Einstein

- A given example: two particle system with sum of momentum $(p_1 + p_2)$ and position difference $(x_1 x_2)$
- They concluded: the premises of "element of reality" is wrong or Q.M. is incomplete.

Ref.[1] . Einstein, A; B Podolsky and N. Rosen, Phys. Rev. 47, 10 (1935), "Can Quantum-Mechanical description of Physical Reality be considered Complete?"

Local hidden variable theory (LHVT)

• Local hidden variable theory: A spin singlet formed by two spin-1/2 particles $|\psi_0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle)$. In Q.M. A: $\vec{\sigma_1} \cdot \vec{a}$ B: $\vec{\sigma_2} \cdot \vec{a}$ • In LHVT, $A(\vec{a}, \vec{\lambda}) = \text{sign}(\vec{a} \cdot \vec{\lambda}), B(\vec{b}, \vec{\lambda}) = \text{sign}(\vec{a} \cdot \vec{\lambda}),$ probability describing correlation between them $P(\vec{a}, \vec{b}) = \int d\lambda \rho(\lambda) A(\vec{a}, \vec{\lambda}) B(\vec{b}, \vec{\lambda})$

BELL inequality(BI)

John S. Bell

Cartoon of Berltmann's socks by Bell (1980)

- BELL inequality (J.S. Bell, Physics, 1, 195(1964)): $1 + P(\vec{b}, \vec{c}) \ge |P(\vec{a}, \vec{b}) - P(\vec{a}, \vec{c})|$
- BI developed many variants, and tested in optics and high energy physics.

Test BI in charmonium decays

•
$$\eta_c \rightarrow \Lambda \overline{\Lambda} \rightarrow p \overline{p} \pi^+ \pi^-$$

• Q.M.: Λ : $M_A = (4\pi)^{-1/2} (S + P \vec{\sigma}_A \cdot \vec{A}),$
 $\overline{\Lambda}$: $M_B = (4\pi)^{-1/2} (S + P \vec{\sigma}_B \cdot \vec{B});$
 $I(\vec{A}, \vec{B}) = \left(\frac{|S|^2 + |P|^2}{4\pi}\right)^2 (1 + \alpha_{\Lambda}^2 \vec{A} \cdot \vec{B})$

• In LHVT

$$I(\vec{A}, \vec{B}) = \left(\frac{|S|^2 + |P|^2}{4\pi}\right)^2 \frac{1}{4\pi} \int (1 + \alpha_\Lambda X \cdot A)(1 + \alpha_\Lambda X \cdot B) d\Omega$$
$$= \left(\frac{|S|^2 + |P|^2}{4\pi}\right)^2 (1 + \frac{1}{3}\alpha_\Lambda^2 \vec{A} \cdot \vec{B})$$

Test BI in $\eta_c \to \Lambda \overline{\Lambda}$ decays N.A. Tornqvist, Foundation of Physics, 11, 171(1981) Nr BI: $|\cos \theta| \le 1 - 2\theta/\pi$, $0 \le \theta \le \pi$ of events $1 + \frac{\alpha^2}{3} \cos \theta$ "Bell's inequality Q.M. prediction $N \propto 1 + \alpha^2 \cos \theta$ $\alpha = 0.642 \pm 0.013$ 0 cosθ +1 -1

31

Test BI in $J/\psi \rightarrow \Lambda \overline{\Lambda}$ decays

优点: 10billion J/ψ events provides about 3.3 million exclusive events, and accuracy for α_{Λ} and $\alpha_{\overline{\Lambda}}$ was measured up to a few percentage.

缺点: D-wave between the $\Lambda \overline{\Lambda}$ introduce a factor to suppress the slope of the proton angular distribution

Summary

• Let us summarize what we have learned