

Super KEKB and Belle II: status and plans

XiaoLong Wang

Fudan University

International Workshop on e^+e^- collisions from ϕ to ψ Budker INP, 25 February 2019

Achievements from B factories

Before LHCb

- Two e^+e^- B factories: Belle/KEKB at KEK and BaBar/PEP-II at SLAC
- 1.5 ab^{-1} data, $1.25 \times 10^9 B\bar{B}$.

X.L. Wang (Fudan)

Achievements at Flavor Physics and Exotics:

From Belle to Belle II

• Accelerator: KEKB \rightarrow SuperKEKB, $\mathcal{L} \times 40!$

● Detector: Belle→Belle II, a new detector with great improved performance. X.L. Wang (Fudan) Belle II Experiment

Belle II Collaboration

- 26 counties/regions
- 113 institutions
- ~ 900 collaborators

Part I. Status of SuperKEKB and Belle II

SuperKEKB/Belle II schedule

Overall schedule

Current schedule

- First collisions on 4/26/2018, 8 years after KEKB and Belle being shut down.
- Phase 2 until July 17th, without inner vertex detector.
- On the way to Phase III: Physics Run will start on 11 March, 2019!

X.L. Wang (Fudan)

The SuperKEKB accelerator

A lot of new designs

The final focus: Key of achieving the goal of $L = 0.8 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$

The superconducting final focus system

- Effective bunch length is reduced from ~ 10 mm (KEKB) to 0.5 mm (SuperKEKB).
- Measured the bunch length in two track events.
- The record the vertical spot size is 400nm with $I \sim 15$ mA, goal is $\mathcal{O}(50$ nm) with full capability of the QCS system.
- Early Phase 3 will continue with $\beta^* = 3$ mm, goal is $\beta^* \sim 0.3$ mm.
- Struggling with beam-beam blow-up, a major issue for Phase3.

SuperKEKB achievements at Phase II

Keep on squeezing the two beams with the superconducting final focus $\beta_y^* = 3$ mm.

$$L_{peak} = 5.5' \ 10^{33} \ / \ cm^2 \ / \ sec$$
 Phase 2,
July 2018

- A long way to go with the superconducting final focus (one order of magnitude in β_u^*)
- Luminosity tuning had priority. When accelerator physicists became tired, Belle II took data (usually owl shift). Only able to record 0.5 fb⁻¹.
- $L_{max} = 2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ was recorded by KEKB.

X.L. Wang (Fudan)

Cut view of Belle II detector

RPC μ & K₁ counter: 7.4 m CsI(TI) EM calorimeter: scintillator + Si-PM waveform sampling for end-caps 3.3 m electronics 5rBeryllium beam pipe 2cm diameter, QCSR and QCSL 7.1 m 4 layers DSSD 2 layers PXD (DEPFET) + Time-of-Flight, Aeroge **4 layers DSSD** Cherenkov Counter → Time-of-Propagation Central Drift Chamber: counter (barrel), smaller cell size, proximity focusing long lever arm, fast electronics Aerogel RICH (forward)

Detector highlights

Advanced & Innovative Technologies used in Belle II

- Pixelated photo-sensors play a central role. Collaboration with Industry
 - MCP-PMTs in the iTOP
 - HAPDs in the ARICH
 - SiPMs in the KLM
 - OEPFET pixel sensors!
- Waveform sampling with precise timing. Front-end custom ASICs (Application Specific Integrated Circuits) for all subsystems.
 - 1 KLM: TARGETX ASIC
 - 2 ECL: New waveform sampling backend with good timing
 - O TOP: IRSX ASIC
 - ARICH: KEK custom ASIC
 - 6 CDC: KEK custom ASIC
 - SVD: APV2.5 readout chip adapted from CMS
- DAQ with high performance network switches, large HLT software trigger farm
- a 21th century HEP experiment.

Signals involving photons (ECL)

X.L. Wang (Fudan)

Belle II Experiment

Signals involving charged tracks

3.4

TOP for Particle Identification: K^{\pm} , p and π^{\pm}

- The charged correlation with the slow pion determines which track is the kaon (or pion)
- Kinematically identified kaon from a D^{*+} in the TOP.
- Cherenkov x vs. t pattern (mapping of the Cherenkov ring):

More examples about iTOP

m(K* K) (GeV/c2)

• K-ID and p-ID

 $\Lambda \rightarrow p\pi$ with the **proton candidate** in the TOP acceptance No PID TOP LL(K) > TOP LL(π) No PID (Preliminary) L = 90 ph L at = 90 pb⁻¹ - 90 nž Belie II TOP 2018 (Preliminary) Belle II TOP 2018 (Preliminary) 1.03 1.04 1.05 1.05

 $\varphi \to \mathsf{K}^+\mathsf{K}^{\scriptscriptstyle -}$ with both the tracks in the TOP acceptance

m(K*K) (GeV/c2)

FIG. 1: This figure shows M[(K+K-)π+] distribution, which was produced using phase-II 306 pb⁻¹ hadron skim data. No PID criteria are applied to any of the charged tracks ($K^{\pm}\pi^{+}$). Selection criteria and further details are described in the internal note BELLE2-NOTE-PH-2018-026.

FIG. 2: This fiture shows $M[(K^+K^-)\pi^+]$ distribution, which was produced using phase-II 366 ph⁻¹ hadron skim data. Combined PID criteria, Prob(K:π) >0.5 for K[±] tracks and Prob(π:K) >0.5 for π^+ tracks are applied. Selection criteria and further details are described in the internal note BELLE2-NOTE-PH-2018-026.

X.L. Wang (Fudan)

B mesons from Belle II

• Rediscovery of *B* mesons in June, shown at ICHEP2018.

• Use the full Phase 2 dataset and apply the FEI (Full Event Interpretation) technique based on boosted decision trees (BDTs, a machine learning technique).

Onwards to Phase 3 and the Physics Run

Inner detector: VXD = PXD+SVD

• PXD installation at KEK around Oct. 2018

PXD Readiness for Phase 3

PXD geometry for Phase 3

• SVD installation, finished in July, 2018

• Successful marriage of the PXD and SVD.

VXD & Endcap Installation and RVC Closure

VXD installation on Nov 21

FWD Endcap push-in on Jan 25

Very good consistency with previous alignment data but bowing of L2 ladders slightly increased after installation

X.L. Wang (Fudan)

Part II. Prospects of Belle II

- CMK-related Physics
- Search for New Physics
 - $B \to \tau \nu_{\tau}$
 - $B \to D^{(*)} l \nu$
 - $b \rightarrow s$ transitions
- LFV in τ decays
- XYZ particles

• ...

Luminosity Profile Updated

Last updated: Jan/29 2019

Assumption:

(1) 8×10^{35} will be achieved during 4 years (4 x 8 months = 32 months). -> $\Delta L_{\text{peak}} = 2.5 \times 10^{34}$ per month

(2) Luminosity upgrade plan obeys Morita's plan until 2020 Summer.

(3) Learning curve is a straight line from 2021 (resolution is one month).

(4) Efficiency of integrated luminosity is 70 % (includes recorded/delivered, maintenance days, etc.).

(5) 8 months operation per year except for FY2019.

(6) 8 months shutdown in 2020 for PXD and 6 months in 2023 for RF upgrade(from 70 % to 100 %).

Belle II Physics Book

Belle II Theory Interface Platform (B2TIP) Workshop series, 2015-2018: WG1 WG6 Semileptonic & Leptonic B decays Charm WG₂ WG7 Radiative & Electroweak Penguins Quarkonium(-like) WG3 WG8 $\alpha/\varphi_2 \beta/\varphi_1$ Tau, low multiplicity WG4 WG9 New Physics V/φ_3 WG5 Charmless Hadronic B Decav

689 pages arXiv: 1808.10567 submitted to PTEP

... a fruitful collaboration among theorists and experimentalists Belle II Experiment

X.L. Wang (Fudan)

Precise measurements of CKM unitarity triangle

Measuring $|V_{ub}|$ via $B^+ \to \tau^+ \nu_{\tau}$

A missing-energy mode

- There is some **tension** at the CKM triangle apex from this measurement vs sin $2\phi_1$
- Leveraging fully-reconstructed tag-*B*, there should be **zero excess energy** in the calorimeter

Search for New-Physics (e.g., charged Higgs) in $B^+ \rightarrow \tau^+ \nu_{\tau}$

$B \rightarrow D^{(*)} l \nu$: challenge to lepton universality

- Theoretically clean channel in SM
- Charged Higgs can contribute to the decay
- $R(D^{(*)})$ is sensitive parameter to BSM!

New-Physics sensitivity in $b \rightarrow s\ell^+\ell^-$

Belle II will improve sensitivity for many LFV τ decays

- Two orders lower, down to 10^{-9} or 10^{-10} level
- Improve the sensitivity for search for LFV, which may be related to some experiments like neutrinoless double-beta decays.

X.L. Wang (Fudan)

Processes for *XYZ*

FIG. 12. Processes that produce $c\bar{c}$ pairs in e^+e^- collisions near $E_{\rm c.m.} = 10.6$ GeV: (a) $B \to K(c\bar{c})$ decays, (b) two-photon fusion processes, (c) e^+e^- annihilation into $c\bar{c}c\bar{c}$, and (d) initial state radiation.

- $\Upsilon(1,2,3S)$ decays, continuum productions and energy scan can be used to study XYZ too.
- Uniquely measurable at Belle II: Two-photon fusion, Double-charmonium production, and Initial-state radiation XL, Wang (Fudan) Belle II Experiment 28/44

Current heavy quarkonium(-like) spectroscopies

Summary

- Belle II has finished the detector construction.
- Belle II had the first collisions on April 26, 2018, and the Phase 2 was until July 17th.
- The Phase 2 got very impressive results from both the SuperKEKB accelerator and the Belle II detector.
- $L_{peak} = 0.55 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ was achieved in Phase II.
- The nano-beam scheme is working well and the Belle II detector has very good performance!
- Belle II is going to start physics running in 2019, coming back the game.
- 0.8×10^{36} cm⁻²s⁻¹ will make Belle II a luminosity revolution experiment, and open new windows for various physics topics.
 - Search for New-Physics in $B \to \tau \nu_{\tau}, B \to D^{(*)} l \nu, b \to s$ transitions and LFV, etc.
 - Figure out the nature of exotic states, charmonium-like and bottomonium-like states.

Thank you!

Back-up

Nano-beam parameters of SuperKEKB

		IED (· ·)	LIED ()	
		LER(e+)	HER (e-)	units
Beam Energy	E	4	7	GeV
Half Crossing Angle	ϕ	41	mrad	
Horizontal Emittance	ε_x	3.2(2.7)	2.4(2.3)	nm
Emittance ratio	$\varepsilon_y/\varepsilon_x$	0.40	0.35	%
Beta Function at the IP	β_x^*/β_y^*	32 / 0.27	25 / 0.41	mm
Horizontal Beam Size	σ_x^*	10.2(10.1)	7.75(7.58)	μm
Vertical Beam Size	σ_y^*	59	59	nm
Betatron tune	ν_x/ν_y	45.530/45.570	58.529/52.570	
Momentum Compaction	α_c	2.74×10^{-4}	1.88×10^{-4}	
Energy Spread	σ_{ε}	$8.14(7.96) \times 10^{-4}$	$6.49(6.34) \times 10^{-4}$	
Beam Current	Ι	3.60	2.62	A
Number of Bunches/ring	n_b	25		
Energy Loss/turn	U_{θ}	2.15	2.50	MeV
Total Cavity Voltage	V_c	8.4	6.7	MV
Synchrotron Tune	ν_s	-0.0213	-0.0117	
Bunch Length	σ_z	6.0(4.9)	5.0(4.9)	$\mathbf{m}\mathbf{m}$
Beam-Beam Parameter	ξ_y	0.0900	0.0875	
Luminosity	Ľ	$8 \times$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	

	KEKB Achieved	SuperKEKB
Energy (GeV) (LER/HER)	3.5/8.0	4.0/7.0
ξ_y	0.129/0.090	0.090/0.088
$\beta_y^* (\text{mm})$	5.9/5.9	0.27/0.41
I (A)	1.64/1.19	3.60/2.62
Luminosity $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	2.11	80

X.L. Wang (Fudan)

Pixel Vertex Detector(PXD)

• PXD:

- Excellent spatial granularity (σ ~ 15µm), low material (0.16% X₀ for layer_1)
- **But**, significant amount of background hits, huge data rate.
- SVD:
 - Precise time (2 \sim 3 ns RMS)
 - But, has ambiguities in space due to 1D strip.
- Combining both yields a very powerful device!

X.L. Wang (Fudan)

Particle Identification in Belle II

< 0.20 mm

- Cherenkov ring imaging with precise time measurement.
- Device uses internal reflection of Cherenkov ring images from quartz like DIRC of BaBar
- Cherenkov angle reconstruction from two hit coordinates and time of propagation of photons

x-t diagram from beam-test time

X.L. Wang (Fudan)

Chamfer size

coordinate 34/44

Aerogel RICH Endcap PID

- RICH with a novel "focusing" radiator
- Two layer radiator
 - Employ multiple layers with different $n \rightarrow$
 - Cherenkov images from individual layers overlap on the photon detector

Cherenkov angle distribution

6.6 σ π/K at 4 GeV/c !

X.L. Wang (Fudan)

K_L & Muon detector (KLM)

- WLS fiber in each strip
- Hamamatsu MPPC at one fiber end
- Mirrored far fiber end
- Endcap:
 - One layer: 75 strips (4cm)/sector
 - 5 segments (×15 strips)
 - Two orthogonal layer = superlayer
 - Total area $\sim 1400 \text{m}^2$
- Barrel:
 - Two superlayers
 - Each layer has two modules: forward and backward
 - Each module has $80 \sim 100$ strips
 - 32 modules totally.

MPPC: Hamamatsu 1.3 × 1.3 mm 667 pixels (used in T2K Near Detector)

The tracking system

Component	Туре	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	10 μ m Au, 0.6 mm Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{zo}\sim 20~\mu{ m m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi} = 100 \ \mu \mathrm{m}, \ \sigma_z = 2 \ \mathrm{mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$
		- 83 $\leq z \leq$ 159 cm		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)

X.L. Wang (Fudan)

CKM and Unitarity Triangle from B Decays

- Flavor physics described by the CKM unitary matrix V_{ckm}
- Standard parametrisation in complex plane
 - Sides→Amplitudes→Branching fractions
 - Angle→Phase→CPV
- All angles can be accessed at B-factories→ precise determination of unitary triangle

•
$$\phi_1 = \beta: b \to c\bar{c}s, q\bar{q}s$$

• $B^0 \to J/\psi K_s^0$
• $B^0 \to \phi K_s^0$
• $B^0 \to \eta' K_s^0$
• $\phi_2 = \alpha: b \to u\bar{u}d$
• $B^0 \to \pi\pi$
• $B^0 \to \rho\rho$
• $B^0 \to \rho\pi$
• $\phi_3 = \gamma: b \to c\bar{u}s$
• $B^{\pm} \to DK^{\pm}$

Is there NP in $B \to D^{(*)} l \nu$?

Missing-energy mode; multiple neutrinos in final state

Tagged analysis:

- full or partial reconstruction
- measure q² distribution, angular distribution, τ polarization, ...

Standard Model:

- lepton universality
- hadronic uncertainties
 ≈ cancel (manageable)

X.L. Wang (Fudan)

Is there NP in $B \to D^{(*)} l \nu$?

Belle II prospects for New Physics (I)

Observable	Theory	limit	aCt		12	4
		320.	V8 LU	vs Bell	Anomai	5 75P
$ V_{ub} $	* * *	10-20	* * *	* * *	**	*
$ V_{ub} $	**	2-10	* * *	**	* * *	*
Br.	***	>50(2)	* * *	***	*	***
Br.	***	>50(5)	***	***	*	***
$ V_{cb} $	***	1-10	***	**	**	*
$ V_{cb} $	* * *	1-5	* * *	**	**	**
$R(D^{(*)})$	* * *	5 - 10	**	* * *	* * *	***
P_{τ}	* * *	15 - 20	* * *	* * *	**	* * *
Br.	*	-	**	***	**	-
	$\begin{array}{c} V_{ub} \\ Br. \\ Br. \\ V_{cb} \\ V_{cb} \\ R(D^{(*)}) \\ P_{\tau} \\ Br. \end{array}$	$\begin{array}{cccc} V_{ub} & \star\star & \\ Br. & \star\star\star & \\ Br. & \star\star\star & \\ V_{cb} & \star\star\star & \\ V_{cb} & \star\star\star & \\ R(D^{(*)}) & \star\star\star & \\ P_{\tau} & \star\star\star & \\ Br. & \star & \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

•
$$B \rightarrow \tau \nu + \tau$$

- $B \to D^{(*)} l \nu$
- b x.i vs. transitions

Belle II New-Physics potential in $b \rightarrow s$ **transitions**

Observables	Experimental Sensitivity	Multi-Higgs Models (§17.2)	generic SUSY	MFV (§17.3)	Z' models ($\S17.6.1$)	gauged flavour (§17.6.2)	3-3-1 (§17.6.3)	left-right (§17.6.4)	leptoquarks (§18.2.1)	compositeness (§17.7)	dark sector (§16.1)	Sum
$B \to K^{(*)}\ell\ell$ angular	**	×	×	**	**	×	**	×	***	**	×	13
$R(K^*), R(K)$	**	×	×	×	**	×	**	×	***	**	×	11
$\mathcal{B}(B \to X_s \ell \ell)$	* * *	×	×	* * *	**	×	**	×	* * *	**	×	15
$R(X_s)$	***	×	×	×	**	×	**	×	***	**	×	12
$\mathcal{B}(B \to K^{(*)}\tau\tau)$	***	***	×	*	*	×	*	×	***	*	×	13
$\mathcal{B}(B \to X_s \tau \tau)$		***	×	*	*	×	*	×	***	*	×	10
$\mathcal{B}(B \to K^{(*)} \nu \nu)$	***	×	×	*	*	×	*	×	***	*	×	10
$\mathcal{B}(B \to X_s \nu \nu)$		×	×	*	*	×	*	×	***	*	×	7

 $\star \star \star$ Belle II \times unlikely

** Belle II + LHCb \Box not studied * LHCb

X.L. Wang (Fudan)