Introduction to the Software System
Based on SNIPER

Xingtao Huang, Meng Wang
Shandong University

The 8" HERD Workshop
Dec. 16-17, 2019, X1’an, China

Shandong University

B History Happy to join HERD

e Founded in 1901 Collaboration

e The 2" national university
established in China in Qing Dynasty

e Located in Shandong . kBein

M Scale
e 8 Campuses 1n three cities
e 32 Schools

e 8 K Employees

e 1 K Professors
e 40 K Undergraduates
e 11 K Graduates

2019-12-17

Research Center for Particle Science and Technology
B Manpower

e 7 faculty members on theoretical particle physics
e 25 faculty members (including 5 technicians) on experimental particle physics
e 13 post-docs

B Experiments and Research Activities

_

ATLAS Top, Higgs

BESIII Framework, tracking Charmonium, light hadron
CEPC Silicon = Framework,simulation Higgs

STAR 1TPC Spin Physics

Daya Bay/JUNO Framework Thetal 3

PandaX DAQ Dark matter

LHAASO ED/PMT Framework Gamma sources

STCF Framework Charmonium, light hadron
HERD under investigation

2019-12-17

Outline

B Framework
e Introduction to the Framework, SNiPER
e Key Features and Components of SNiPER

B Detector Simulation

e DD4hep: Detector Geometry Description Toolkit
e Detector Simulation within SNiPER

B Event Data Model
e PODIO: Event Data Model Toolkit

B Software Management

e Computing environment, Tools , Documentation

B Summary

2019-12-17

Architecture of Offline Software System

H Offline

e Specific to the Physics Experiment

e Including Generator, Simulation, Calibration , Reconstruction and Analysis
B SNIPER Framework

e Data Processing Management, Event data Management, Common Services...
B External Libraries

o Frequently used third-party software and tools

Calibration

External Libraries ()

l \ ROOT, Geant4, DD4hep,

Offline

PODIO, Boost, Python

SNIPER

2019-12-17

About SNIPER (1)

B SN1PER: the “Software for Non-collider Physics ExpeRiment”
e Developed for JUNO experiment
e But also considered for other non-collider physics experiments

B Design and development
e Learn a lot from other software frameworks, such as Gaudi
e Based on the valuable experiences from DayaBay experiment

e Coding from scratch since 2012

2019-12-17

About SNIPER (1)

B Main goals
e [Lightweight, less dependences on third-party software/libs
e Fast and flexible execution

e Easy to learn and convenient to use

B Used by Several Experiments

JUNO (Jiangmen Underground Neutrino Observatory) in China
LHAASO (Large High Altitude Air Shower Observatory) in China
STCF (Super Tau-Charm Facility) in China

nEXO (next Enriched Xenon Observatory) in U.S.

B A Good Team to maintain and optimize
e SDU and IHEP

2019-12-17

Key Features of SNIPER (l)

B Highly modular
e Each module 1s functionally independent

e Main functions for data processing have been implemented
in kernel modules

B Standard interfaces between different modules
e The interfaces have been very stable

e People from each experiment only focus on event data
model, algorithms, detector geometry etc.

B Dynamically loading packages/modules/elements

e New packages can be easily loaded/used as plugins by

framework g

2019-12-17

Key Features of SNIPER (ll)

B Separation between data and algorithm
e Less coupling between algorithms
e Development of new algorithms at the same time

B Data Store for event data management

e Algorithms retrieve/put event data from/to Data Store

B Flexible event execution
e Sequential execution

e Jump/nested execution

B Support multithreading
e Underlying the intel TBB 1s deployed

e Multi-tasks naturally maps with multi-threads ?

2019-12-17

Key Components for Users

B Algorithm —

, They are dynamically Loaded
W Service — | Elements (DLElement) and configured
B Task in python script
B Data Store
B Property
B Logging

® Job Configuration with python
B Multithreading

10
2019-12-17

Algorithm

B An unit of code for event execution

e Perform event calculation during event loop

®m SN1PER provides the interface, AlgBase

B User’s new algorithm inherits from AlgBase
e [ts constructor takes one std::string parameter

e 3 member functions must be implemented
 bool mitialize() : called once per Task (at the beginning of a Task)
* bool execute() : called once per Event
 bool finalize() : called once per Task (at the end of Task)

B Then, the new algorithms can be called by Framework
11

2019-12-17

Service

B Similar with Algorithm, but

e A piece of code for common use, 1.e. GeometrySvc, DatabaseSvc...
e They are called by algorithms or other services, wherever needed

®m SN1PER provides the interface, SvcBase

® New services inherit from SvcBase
e [ts constructor takes one std::string parameter

e 2 member functions must be implemented
 bool mitialize() : called once per Task (at the beginning of a Task)
 bool finalize() : called once per Task (at the end of Task)

B New services can be used by all algorithms
12

2019-12-17

Task

B A lightweight application manager
e Consist of algorithms, services and sub-tasks
e Control algorithms’ execution

e Has its own data store and 1/O system (see next slide)

® One job can have more than one Tasks

sk
e Ao T
e

13

2019-12-17

>

| : :
TopTask SubTask SubTask

B Algorithms 1n one Task are sequentially executed

e In the order of algorithm position

B SubTask provides jump execution
e [t will be invoked on demand

e After execution, return back to the upper task
14
2019-12-17

Incident

B Incident provides jump execution procedure
B IncidentMgr correlates incidents with their handlers
e [ncident: trigger the execution of corresponding handlers
e IncidentHandler: wrapper of any specific execution procedure

Sequential Procedure Extra Procedure
- _ "n,-i.dﬁnizl-l.-.nd.l‘n_l_
Incident 1. jump lincidentHandler
_ —> hé
gtrlng name() € rl handle(Incident&)
fire() 2. back regist(string)

1. Regular execution procedure jumps to another extra procedure

2. Back to the original procedure after all corresponding Handlers are executed

B Both Algorithms and Services can fire incidents

e Root I/O 1s based on incident mechanism

2019-12-17 15

Data Store

W [t 1s the dynamically allocated memory place to hold
events data which are being processed

B Algorithms retrieve event data from the Data Store
and put new event data back to Data Store

/

-1=

o

\ : w %

2019-12-17

Layout in Data Store and Root File

B In Data Store
e Directory Structure
e Unique path

— /Event
— /Event/Gen

— /Event/Sim
/Event/Sim/SimHeader
— /Event/Sim/SimCDEvent
— /Event/Sim/SimTTEvent

2019-12-17

In Root File

= Tree Structure
= Tree/branch name
« same with Data Store path

~ Event
[OR—y ,
— Gen
Los——
—-“ Sil]'l
—& SimHeader
:z SimCDEvent
e — z SimTTEvent
_ Meta
& EvtNavigator
—_ FileMetaData
re— JobConfig
JunoGeom

17

Standard interfaces for Access to Event Data

® User interface, SniperDataPtr, 1s provided to retrieve
the Event Buffer and Get Current Event with the path

SniperDataPtr<SimCDEvent> navBuf(getScope(), "/Event/Sim/SimCDEvent");

SimCDEvent* nav=m_buf->curEvt();

B The Service, BufferMemMgr, 1s used to put/adopt event
back to Buffer with a unique path

SniperPtr<|DataMemMgr> mMgr(getScope(), "BufferMemMgr");
SimCDEvent* cdevent = new SimCDEvent();
mMgr->adopt(nav, "/Event/Sim/SimCDEvent");

18
2019-12-17

Property

B Configurable variable at run time

B Algorithm, Service and Task can declare their member
variable as Property

declProp ("MyString"”, m str):;

B Configure a property in Python script

alg.property ("MyString"™) .set ("string value")

B Types can be declared as properties:
e scalar: C++ build 1n types and std::string
e std::vector with scalar element type

e std::map with scalar key type and scalar value type

2019-12-17 19

Logging

B SniperLog supports different output levels
0: LogTest 2: LogDebug. 3: LogInfo. 4: LogWarn. 5: LogError 6: LogFatal

LogDebug << "A debug message"™ << std::endl:;

LogInfo << "An info message" << std::endl:;
LOgError << "An error message" << std::endl:;

B Alg/Svc/Task can set their own Loglevel at run time

B The output message includes more information , such as

e where 1t comes from

e Level of message

very helpful for debugging codes

e Contents of message

aHelloAlg.execute DEBUG: A debug message
aHelloAlg.execute INFO: An info message

aHelloAlg.execute ERROR: An error messadge

2019-12-17 20

Multithreading of SNIPER: MT-SNIPER

B Developed based on Intel TBB.
e Muster: Multiple SN1IPER Task Scheduler
e SniperTbbTask: Binding of a SN1PER Task to a TBB task

B JUNO detector simulation works well with MT-SNi1iPER

SniperTbbTask in Thread #1
Muster P

spawn (N) II Thread Local Thread Local
Algorithm #1.17 Service #1.1

SniperTbbTask in Thread #2

II Thread Local Thread Local
Algorithm #2.1 Service #2.1
®

Thread Local

Resource Copies

Global Res.

2019-12-17

A Job Configuration File with python

Helloworld.py

LMD O rt S n i p eI

task = Sniper.Task("task")
task.setLogLevel (2)

import HelloWorld
alg = task.createAlg("HelloAlg/dalg")
alg.property("someString") .set ("some value")

task.setEvtMax (5)
task.show ()
task.run ()

lhaaso:~ huangxts |python Helloworld.py Run it !

2019-12-17 22

Integration with other promising tools

B Members of the FCC, ILC, CEPC, SCT, STCF,CLIC, LHC
communities met for a Future-Collider-Software Workshop in
Bologna on June 12&13 https://agenda.infn.it/event/19047/

B Reached an Agreement to share the common packages or tool and
create common turnkey software stack(Key4hep)

e DD4hep for Detector Geometry Description
e PODIO for building Event Data Model (EDM4hep)

2019-12-17

DD4hep: a generic Detector Description

tool for HEP 22\

=

N\

F. Gaede (CHEP2019)

® Developed in AIDA/AIDA2020 , and used by ILD, CLICdp, FCC-ee, FCC-hh,

CEPC, LHCb, CMS, SCT and STCF.

Support the full life cycle of the
experiment

e Detector concept development
e Detector optimization

e Construction and operation

DDDDDDD

Provided
extensions

eeeeeeeee

eeeeeeeeeeeeeee

DDG4| [DDRec]

ccccccccccc

& &8
Converte Extensions
2 h 2
Geant4 Reco
Program Program

OOOOOOOOO

\\\\\\\\\
llllllllll

e Simulation, reconstruction and analysis

2019-12-17

Use Root TGeo as geometry implementation

Consistent description with one single data source for
Geometry description with compact xml-files and C++ drivers

Provide output formats or interfaces: Geant4 , GDML...

Detector Simulation within SNIPER

B SN1PER manages detector simulation with Task

e A dedicated algorithm (DetSimAlg) for all sub-detectors simulation

e A dedicated service (DetGeoConsSvc) to convert xml or gdml of DD4hep
to Geant4

e A dedicated service (G4Svc) to launch Geant4

e A user-end service (DetSimFactory) to set up all the Geant4 related classes

® ® (G4UserRunAction

e G4VUserPhysicsList ® G4UserkventAction

e G4VUserPrimaryGeneratorAction ® G4UserStackingAction

® (G4UserTrackingAction
® (G4UserStepingAction

2019-12-17

Overview of Detector Simulation System

- s —

optional

2019-12-17

DD4hep example: STCF Detector Description

B Define geometry and materials in xml files

-bash-4.1% 1s
detectorDIRC.xml detectorMUD. xml detectorVTD. xml STCFECAL. xml

detectorECal.xml detectorPID.xml materials02. xml STCF_test.xm
detectorMDC. xml detectorRICHBarrel.xml elements02.xml materials. xml STCF. xml
detectorMUC. xml detectorSC. xml elements. xml muondetector2. xml

B Construct detector in c++ driver files

-bash-4.1% 1s

AirTube_geo.cpp DIRC_geo.cpp SCTube_geo.cpp Tracker_geo.cpp
BarrekDIRC_geo.cpp InnerPlanarTracker_geo.cpp STCF_BEMC_geo.cpp TrackerSupport_geo.cpp
detectorMUD.cpp PolyhedraEndcapCalorimeter2_geo.cpp STCF_EEMC_geo.cpp ZPlanarTracker_geo.cpp

B Deliver detector geometry to Geant4

DetGeoConsSvc
myxmlsvc = task.createSvc/(

myxmlsvc. (
myxmlsvc. (

2019-12-17

DD4hep example :Geometry management

B Each sub-detector 1s independent with others, different version in
different path

B Flexible to build a full detector with different combinations of
sub-detectors

B Common files for materials and elements

CALO

’I

STK

TRD

11

2019-12-17

PODIO: an Event Data Model toolkit for HEP

B Based on the use of POD (Plain-Old-Data) for the event data

B Developed in AIDA2020 and originally for FCC study, but
potentially to be re-used by other HEP

@ user layer (API):

o handles to EDM objects (e.g. Hit)
e collections of EDM object handles HitCoIIection}
(e.g. HitCollection). o User Layer
@ object layer = Hit }
e transient objects (e.g. HitObject) ’
. . 1
handling references to other objects and i
vector members [HitObject] Object Layer
e POD layer
e the actual POD data structures holding 1 Y
the persistent information (e.g. HitData) [HitData J POD Layer

direct access to POD also possible - if needed for performance reason F. Gaede (CHEP2019)

2019-12-17 29

Core Features of PODIO |

MCParticle:

o clear design of ownership (hard to make
mistakes) in two stages:

Description: "LCIO MC Particle"
Author : "F.Gaede, B. Hegner"

: Members:
o objects added to event store are owned by e 6 1/ P0G coe of the particle
event store - int generatorStatus // status as defined by the ge
. - int simulatorStatus // status from the simulation
o objects created stand-alone are reference
. OneToManyRelations:
Counted and aUtomatlca”y garbage - MCParticle parents // The parents of this particle.
collected: - MCParticle daughters // The daughters this particle.
' ExtraCode:
o allow to have I-1, I-N or N-M const_declaration:
"bool isCreatedInSimulation() const {
relationShips return simulatorStatus() !'= 0 ;
) , } \n"
o referenced objects can be accessed via
iterator or directly o code generation (C+ /Python) for EDM
o also stand-alone relations between classes from yaml files
arbitrary EDM objects o EDM objects (data structures) are built
from basic types and components
o additional user code (member functions)
can be defined in the yaml files
F.Gaede PODIO CHEP 2019, Adelaide, Nov 7,2019 | 5/ 17

2019-12-17 30

Integration of PODIO into SNIPER

B Integrated PODIO into SNiPER
e Define Event Data in the yaml file
e Python script for c++ code generation
e Algorithm uses the Event Data Object
e PODIO writer writes the Event Data into the ROOT file

2019-12-17

31

Yaml file ey ~C++ codes mmm) Root File

59 datatypes

60 # Datatypes are components that can be stored in a Collection —Jroot

61 STCF: :MDCTrack: _JPROOF S
62 Description : "MDC Track" - X
63 Author : "Q. Y. LI" B AO0T Faes
64 Members : mple.r
65 - int PdgCode // pdgcode

66 - int MotherID // motherid

67 - int GeneratorFlags // gflags

68 - STCF::LorentzVector FourMomentum // fourmomentum

69 OneToOneRelations

70 - STCF::Vertex StartVertex // Start track vertex [cm, ns]

71 - STCF::Vertex StopVertex // Stop track vertex [cm, ns]

72 OneToManyRelations:

73 - STCF::MDCHit Hits // contains many hits

74 ExtraCode

75 declaration: "

76 /// operator to allow pointer like calling of members

77 {name}* operator->() { return ({name}*) this ; }

78 "

34 class MDCTrack {

35

36 friend MDCTrackCollection;

37 friend MDCTrackCollectionIterator;
38 friend ConstMDCTrack;

39

40 public:

41

42 /// default constructor

43 MDCTrack() ;

44 MDCTrack (int PdgCode, int MotherID, int GeneratorFlags, STCF::LorentzVector FourMomentum)

45
46 /// constructor from existing MDCTrackObj
47 MDCTrack (MDCTrackObj* obj);

2019-12-17

Software Environments and Management

® Programming language: C++ and Python
e (C++: main part implementation
e Python : job configuration interface

B Packages management tool: CMake

e Help developers to compile packages easily

e Help users to setup the environment for running the application easily
B Operation System: Scientific Linux

e Scientific Linux 6/CentOS 7 or higher

o G++>6.5.0(C++14)
B Version Control System: GitLab

e Keep the history of code evolution
e Synchronization and sharing between developers
e Tag and release

2019-12-17

33

Installation and Documentation

B Installation

e A shell script 1s provided to Automatically install the whole offline
software

B Documentation

e JUNO User Guider Wiki page

e LodeStar User Guider for LHAASO Experiment
e OSCAR User Guider for STCF Experiment

2019-12-17

<

>

juno.ihep.ac.cn

Getting Started

© Tutorials and workshops
 JUNO Software Workshop, LLR, 2016: htp://juno.inep.ac.cn/cgi-bin/Dev_DocDB/DI 6
 JUNO Monte Carlo and Analysis Workshop, 2016: http://juno.inep.ac.cn/cgi-bin/Dev_DocDB/DisplayMesting?conferenceid=157}
 JUNO Workshop, 2014: http://juno.ihep.ac.cn/cgi-bin/Dev_DocDB/DisplayMeeting?conferenceid=54

© IHEP accounts: svn, email, afs (lint, liwd)

* Getting an account at CNAF (cgenster, salaman)

o installation
« Externallib

© setup environment

© Setup for CNAF users (cgenster, salaman)

* compiling and executing a helloworld, simulation, reconstruction...int)

© Submit jobs in IHEP Cluster

o Submit jobs to CNAF Cluster (salaman)

© Contact List for each part

Framework

o Framework Meetings
« introduction (zoujh, liwd)
© job configuration with python (int, zoujh)
© Event Data Mode! (huangxt, it
© Root /O (huangx, It
© Detector Description (youzy)
« identifier

* geometry
® Create an algorithm (zhangk, zoujh)
© buffer interface
o ntuple

Simulation s

© Physics Generators
 Detector simulation user guide

Users Guide

OSCAR

(Offline Software of Super Tau-Charm Facility)

STCF Offline Software Group

April, 2019

Users Guide

LodeStar

(LHAASO Offline Data Processing Software Framework)

Wenhao Huang, Xingtao Huang

Shandong University

December, 2018

Summary

® SNi1PER 1s originally developed for JUNO, also used by
LHAASO,STCF,CSNS, nEXO...

e Main functions for data processing have been implemented
B MT-SNi1PER is developed to support Multithreading

e JUNO Detector simulation works well

B Some promising toolkits such as DD4hep, PODIO have
been integrated with SN1IPER

e Describe detector geometry with DD4hep
e Define Event Data Model with PODIO

B Most popular tools/compiler have been used
e Cmake, Gitlab, C++14

B Installation toolkits and documentations also provided

2019-12-17

Thanks for your attention !

Thanks to members of the Working Group:

Wenhao Huang!, Xingtao Huang!, Qiyun Li', Weidong Li?, Tao Lin?,
Xueyao Zhang!, Jiaheng Zou?

ISDU , 2IHEP

2019-12-17

