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Project in a nutshell
• In 2017 DAMPE collaboration achieved a breakthrough:


Extended Cosmic Ray measurements beyond TeV

with unprecedented energy resolution


• This opens a new field — Direct Cosmic Ray measurements

• in the transition from galactic to extragalactic origin


• PeVSPACE

• Fundamentally improve the measurement accuracy at highest 

• energies (TeV—PeV) using state-of-the art Artificial Intelligence

‣ To help solving key physics questions: 

‣ nature of Cosmic Rays & Dark Matter

Project start in 2020, small group for 5 years (PI — Andrii Tykhonov)
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Cosmic Rays

conventional  
models

Unknown 
physics!
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ElectronsProtons

Pulsar

Dark 
Matter

Measured with relatively low accuracy at TeV—PeV energies

Key questions unanswered due to large systematic uncertainties

‣ Protons: origin of Cosmic Rays after the “break” at ~0.3 TeV?


‣ Electrons: Dark Matter contribution at multi-TeV energies?

“Break”
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Main goal of the project
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Model 3
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Help answering key physics questions

‣ Cosmic Ray origin and its effects on the Universe composition


‣ Nature of Dark Matter

ElectronsProtons

Pulsar

Dark 
Matter

 Substantially improve measurement accuracy at TeV—PeV energies
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Detection Challenge

TykhonovPartB2PeVSPACE
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Figure1:Typicaldisplaysofmulti-TeVeventsintheDAMPEflightdata.Particlehitsandreconstructedtracks
areshownwithblackstarsandlinesrespectively.Threesub-detectorscanbeseen(ineacheventdisplay),from
toptobottom:calorimeter,trackerandplasticscintillatorarray.Currenttrackreconstructionalgorithmrelies
ontheparticle-direction(dashedline)providedbythecalorimetersub-detector.

theCRdirectdetectionintheTeV–PeVenergyregion.
Analternativetoexternal-seededalgorithmsisthedirectcombinatorialone,inwhichtrackseedsare

searchedamongallpossibleparticlehitcombinations.Thisapproachworksforlowoccupancycleande-
tectorsatrelativelylowenergies.However,itscomputationaltimegrowsasafactorialofthenumberofhits.
GiventheimmenseaveragehitmultiplicityinDAMPEandHERD,combinatorialsearchisnotfeasiblewith
currentlyavailablescientificcomputingfacilities.

Asomewhatsimilarexternal-seededorcombinatorialtrackreconstructionapproachesarebeingusedinall
otherspacebornedirect-detectionexperiments,includingFERMI-LAT,AMS-02,CALETandothers.Themost
advancedtrackreconstructionwasdevelopedbytheFERMIcollaboration,describedin[18].However,this
approachisnotgenericenoughandisfocusedmainlyonthereconstructionofthegamma-raypair-production
processinthesub-TeVenergyrange.

Anoveltrackingtechniquehastobedevelopedinordertouncoverthefullpotentialofexistingandfuture
direct-detectionexperimentsforCosmicRay(CR)detectionintheTeV–PeVrange.Deeplearningorsimilar
ArtificialIntelligence(AI)approachappearasanaturalcandidateforsuchadevelopment.Currently,noneof
theoperatingCRdirect-detectionspaceborneexperimentsuseAIforparticletrackreconstruction.

WithmythoroughunderstandingoftheDAMPEandHERDdetectorsandstrongexpertiseinCRdatare-
constructionandanalysistechniques,IaminauniquepositiontoexploitAIforparticlereconstructionand
identificationintheCRdirect-detectionexperiments.Thisinnovativeapproachwillbefullydevelopedinthis
project.

AnotherkeychallengeintheTeV–PeVCRdetectionisthatofelectron–proton(e/p)discrimination.The
fluxofCRprotonsisafewordersofmagnitudehigherthanthatofelectrons[19],thus,aprotondiscrimination
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Figure 2: (Left) Cosmic Ray (CR) electron–positron flux measured by DAMPE [4] and other experiments.
(Right) Estimated proton background fraction in the DAMPE CR electron–positron flux measurement.

capability of at least 105 is required in order to detect exclusively CR electrons. The e/p discrimination at
1 TeV and above becomes even more challenging, since images of electron and proton interactions appear to
look effectively the same in the calorimeter. Existing e/p discrimination techniques in CR direct-detection
experiments usually rely on either custom-engineered variables, boosted decision trees or principle component
analysis [4, 20, 21]. These techniques will not be able to efficiently cope with proton background rejection in
the challenging TeV–PeV energy region.

In the present CR electron measurement by DAMPE [4], of which I was one of the key contributors, the
proton contamination reaches 30% at 5 TeV and increases further with energy (see Figure 2). Result reported [4]
is currently the most precise direct measurement of CR electron–positron flux at multi-TeV energies. The
precision of this measurement is limited by the low statistics of multi-TeV data. With larger accumulated data
set by DAMPE and HERD the statistical uncertainty of direct CR measurement will be reduced by an order
of magnitude. In this regime, the proton background reduction will become a dominating source of systematic
uncertainty, limiting the precision of CR electron measurement at 10 TeV and higher energies.

The reduction and consequently the estimation of proton background represents a major challenge in the future
CR electron flux measurements. On the other hand, deep learning or similar techniques show great potential
for enhancing the e/p discrimination capability by at least an order of magnitude. This project will be the first
to exploit deep learning for addressing the e/p discrimination challenge.

The last but not least challenge is related to the modeling of hadronic interactions in Monte-Carlo (MC) sim-
ulations. The hadronic models and cross-sections suffer high systematic uncertainties due to i) non-perturbative
nature of strong interactions and ii) absence of particle beam facilities with multi-TeV and higher energies to
validate the models. Inelastic hadronic cross-sections at multi-TeV and higher energies are neither measured
precisely nor calculated unambiguously in the theoretical (phenomenological) models [22]. These uncertain-
ties affect dramatically the CR proton and ion spectra measurements and limit their precision.

In order to obtain the energy spectrum, a de-convolution of reconstructed energy into primary energy has
to be performed using a so-called unfolding matrix, obtained from Monte-Carlo (MC) simulation [23] (see
Figure 3 left panel). DAMPE and CALET are currently the experiments with the deepest calorimeters ever used
in space. DAMPE is about 1.7 nuclear interaction lengths (lI) thick and HERD will feature an even deeper
calorimeter of 3lI . In spite of this, these detectors are not (and will not be) capable of fully containing the
hadronic showers from TeV–PeV particles. The average fraction of energy deposited by a proton in DAMPE
after passing the trigger selection varies from about 50% at 1 TeV to only 10% at 1 PeV. Thus, estimation
of CR proton/ion energy relies heavily on the precision of hadronic models used in MC simulations and the
predicted shower topology. Such models were never tested or verified at these high energies [24]. As a result,
the modeling of hadronic interactions introduce large systematic uncertainties in the CR direct detection in the
TeV–PeV energy range (see Figure 3 right panel). Reducing these uncertainties is a must for a high-precision
CR proton/ion flux measurement.
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Figure 8: Mean deposited energy in DAMPE as a function of primary proton energy.

will be first developed using the DAMPE simulation and data, and then optimized/validated separately for the
two detectors. The PI will be responsible for developing these objectives in the first 2 years of the project, while
the postdoc will overtake the responsibility for the 3 years after it.

The e/p discrimination technique will be developed and optimized with DAMPE during the first 2 years
(Objective 2A). Application of this technique to the HERD detector will be also developed during this period
based entirely on the MC simulation. Once this technique is successfully implemented in the DAMPE CRE
analysis, the focus will switch to the Objective 2B, e/p discrimination with HERD.

3. Hadronic Monte-Carlo tuning.

Objectives 3A and 3B: I propose to use DAMPE and, in future, HERD data to identify and tune the pa-
rameters of hadronic models and cross-sections of hadronic interactions in TeV–PeV energy range, to improve
the precision of CR measurements with these detectors. Both DAMPE and HERD feature a unique combina-
tion of fine-grained thick calorimeter and relatively large instrument acceptance, which gives it an exclusive
opportunity to study hadronic showers at high energies with the best possible precision.

As seen from figure 8, the difference in the average calorimeter response using different hadronic models
reaches more than 10%. Therefore the unfolding matrix (Figure 4) used in the CR proton/ion spectra measure-
ments is determined with poor precision. Moreover, the modeling of HET trigger is also severely affected by
the limited precision of hadronic models and lack of precise knowledge of the hadronic inelastic cross-sections,
leading to another 10% of uncertainty. The aim of this work package is to reduce the total effect of these
uncertainties to 1–5%. To achieve this, two main strategies are proposed:

• Fine-tune total elastic/inelastic hadronic cross-sections by examining both showering and non-showering
proton/ion events in the DAMPE data, collected with MIP trigger.

• Identify and tune model parameters and cross-sections by examining various shower-shape distributions
in the events collected with the standard HET trigger.

Preliminary estimates show that with the first approach, the hadronic uncertainties can be reduced to couple
percent at few TeV, using the current DAMPE data. Analysis at higher energy would most likely rely on the
second approach.

The first approach provides clean event selection, since MIP trigger efficiency does not depend on the
simulation of hadronic interactions and is well modeled. Inelastic cross-sections can be derived in this approach
by studying the fraction of showering versus non-showering events. However, due to the limitation of data
throughput from DAMPE (HERD) to ground control, only a small fixed fraction of MIP events is admitted by
DAQ system for further analysis. Therefore, the major limitation of this approach comes from the low data
statistics of MIP events.

In the second approach, longitudinal, lateral and other shower-shape parameters will be studied, similar to
how it is done in the analysis of the DAMPE beam test data (see Figure 9) at CERN SPS. That is, after removing
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Approach

Problem Approach Expected 
Improvement Innovation

Hadronic   
simulations

Identify and tune parameters 

of models & cross-sections 

using DAMPE & HERD data

Hadr. uncertainty

from 15—20% 

to 1–5%

First validation  
of hadr. models at 

TeV—PeV energies

Track        
reconstruction

Apply Artificial Intelligence (AI) 
for particle hit classification

Charge estimation

from 10—15% 

to 1–3%

First application   
of AI for particle 
tracking in Space

Electron   

identification 

Apply Deep Learning to low-
level data features for  
electron-proton discrimination

Proton rejection

from 30%

to 1–3%

Unconventional 
use of Machine 
Learning in Space

Reach at least one order of magnitude higher accuracy
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Feasibility
• Improving accuracy of hadronic simulations


‣ State-of-the-art models in DAMPE (cooperation with CERN, CORSIKA)

‣ … part of Geant4 release  

• Proposed reconstruction approach 


‣ High proton/helium separation shown


• Electron identification


‣ Implemented Neural/Convolutional Net

‣ ~2-3 times better proton rejection  
‣ at 10 TeV

‣ (compared to Nature result)


‣ Further improvement with more data
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Figure 2: (Left) Particle charge (Z) identification capabilities of DAMPE using the standard and the proposed
approach. (Right) Proton background rejection capabilities of the proposed Deep Neural Net (DNN) e/p clas-
sifier and the standard one used in [3].

similar [13]. To fully uncover the potential of AI algorithms, state-of-the-art CPU/GPU computing facilities
will be exploited for this project, including the UniGe computing cluster and Piz Daint Swiss supercomputer
(most powerful in Europe), with no additional cost to the project. A first allocation of 32000 CPU node-hours
on Piz Daint was granted to myself following a dedicated scientific proposal this year.

New tracking algorithms will obtain CR particle track information with the highest precision, enabling
track-based absolute charge (Z) identification. This can not be achieved with the existing tracking algorithms.
Currently, estimation of Z at multi-TeV energies is performed using either the plastic scintillator detectors or
the silicon detector in the first layer of the tracker [4, 21, 22]. With that approach, the error of proton/helium
identification with DAMPE reaches a wasteful 10% at 100 TeV, and increases further with energy. In this
project, I propose to take advantage of complete particle track information for Z identification. Figure 2 (left
panel) demonstrates a drastic improvement in Z identification with DAMPE using the track-based approach.
In this example, a specific event selection is carried out using only a small sample of the data, the “clean”
events, unlike those shown in Figure 1 (left panel). In the current case of CR analysis, given the existing track
reconstruction techniques, track-based Z identification is not applicable since “clean” events represent only a
tiny fraction of the data. With the new tracking algorithm track-based Z identification will be inherently possible
since it will provide precise information for any CR event type. The reconstruction algorithm developed in this
project will drastically improve the precision of CR absolute charge (Z) measurement, and will reduce the
uncertainty of proton/helium identification at TeV–PeV energies by at least an order of magnitude.

It is noteworthy that track reconstruction using AI is already being actively investigated within the high-
energy physics community to be applied to the LHC experiments [23]. However, there is a fundamental dif-
ference between tracking in collider experiments and astroparticle ones. The former profit from the known
particle origin (the interaction point between the two colliding beams) and from a strong magnetic field in the
detector, resulting in the cleaner selection of hit combinations based on the track curvature. Neither of these are
available in the case of astroparticle direct-detection experiments at 10 TeV and higher energies. Moreover, the
overwhelming effect of particle interaction cascades (see Figure 1 left) is not an issue in the case of collider ex-
periments due to the very limited amount of passive materials inside the tracking detectors, which is negligible
compared to the case of the DAMPE and HERD setups. Finally, the energy reach of LHC even at the foreseen
Run 3 is limited to 7 TeV per beam, much lower than in the case of astroparticle experiments. This will be the
first project to explore an AI for particle tracking in high-energy astroparticle experiments.

To tackle a related challenge, the electron/proton (e/p) discrimination at multi-TeV energies, I propose to
use for the first time a deep learning approach. The feasibility studies performed by myself and a PhD student
under my supervision at UniGe show that it can improve the proton rejection capability of DAMPE and HERD
by at least an order of magnitude (Figure 2 right panel). As a result, it will qualitatively improve the expected
precision of CR electron flux measurement at 10–100 TeV energies. In our feasibility studies, we developed
and tested a few different Deep Neural Net (DNN) classifiers, which used various calormieter data variables
as an input. Performance of these classifiers applied to the DAMPE setup was evaluated using the proton and
electron MC simulations, and compared with the performance of the standard e/p classifier used in [3].
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Expected results in physics

• Develop new Cosmic Ray detection techniques & methods


‣ Track reconstruction and electron identification


‣ Research program for improving hadronic simulation


• Measure Cosmic Ray Spectra (application to DAMPE)


‣ Electrons, using developed electron/proton discrimination technique


‣ Protons, using developed tracking & tuned hadronic models


• Long term (application to HERD)


‣ Optimise developed techniques & methods for HERD
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Summary

Ambitious (borderline of risky) project with 
immediate science impact

• Core — precision measurements of TeV—PeV Cosmic Rays


• Aim — help understanding origin of Cosmic Rays and Dark Matter


• Plan


‣ Develop reconstruction & identification techniques


‣ Set up research program for improving hadronic simulations


‣ Apply to DAMPE data


‣ Long-term: apply to HERD


• Feasibility — demonstrated with DAMPE data and simulation


• Interdisciplinary — physics, computer science
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Problem of track reconstructionTykhonov Part B2 PeVSPACE
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Figure 1: Typical displays of multi-TeV events in the DAMPE flight data. Particle hits and reconstructed tracks
are shown with black stars and lines respectively. Three sub-detectors can be seen (in each event display), from
top to bottom: calorimeter, tracker and plastic scintillator array. Current track reconstruction algorithm relies
on the particle-direction (dashed line) provided by the calorimeter sub-detector.

the CR direct detection in the TeV–PeV energy region.
An alternative to external-seeded algorithms is the direct combinatorial one, in which track seeds are

searched among all possible particle hit combinations. This approach works for low occupancy clean de-
tectors at relatively low energies. However, its computational time grows as a factorial of the number of hits.
Given the immense average hit multiplicity in DAMPE and HERD, combinatorial search is not feasible with
currently available scientific computing facilities.

A somewhat similar external-seeded or combinatorial track reconstruction approaches are being used in all
other spaceborne direct-detection experiments, including FERMI-LAT, AMS-02, CALET and others. The most
advanced track reconstruction was developed by the FERMI collaboration, described in [18]. However, this
approach is not generic enough and is focused mainly on the reconstruction of the gamma-ray pair-production
process in the sub-TeV energy range.

A novel tracking technique has to be developed in order to uncover the full potential of existing and future
direct-detection experiments for Cosmic Ray (CR) detection in the TeV–PeV range. Deep learning or similar
Artificial Intelligence (AI) approach appear as a natural candidate for such a development. Currently, none of
the operating CR direct-detection spaceborne experiments use AI for particle track reconstruction.

With my thorough understanding of the DAMPE and HERD detectors and strong expertise in CR data re-
construction and analysis techniques, I am in a unique position to exploit AI for particle reconstruction and
identification in the CR direct-detection experiments. This innovative approach will be fully developed in this
project.

Another key challenge in the TeV–PeV CR detection is that of electron–proton (e/p) discrimination. The
flux of CR protons is a few orders of magnitude higher than that of electrons [19], thus, a proton discrimination
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Problem of energy estimation
• Relation between true and deposited proton energy in DAMPE detector
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Figure S3: Probability distribution of deposited energies in the BGO calorimeter for different in-
cident energies, for the GEANT FTFP BERT model. The color shows the fraction of events in each
energy bin.
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True energy [TeV]

Observed Energy:

40 — 63 TeV 

True energy:

90 — 250 TeV  
(68% containment)
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• Relation between true and deposited proton energy in DAMPE detector

‣ Example: one bin of deposited energy, 40—63 TeV


‣Obtained form simulation with 3 different spectral indices (2.7, 2.8, 2.6)
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Problem of energy estimation


