

• Established by the European Commission

ERC PeVSPACE

Direct Detection of TeV–PeV Cosmic Rays in Space

Andrii Tykhonov

HERD collaboration meeting, Dec 16-18, 2019

Project in a nutshell

- In 2017 DAMPE collaboration achieved a breakthrough: Extended Cosmic Ray measurements beyond TeV with unprecedented energy resolution
- This opens a new field Direct Cosmic Ray measurements in the transition from galactic to extragalactic origin

PeVSPACE

Fundamentally improve the measurement accuracy at highest energies (TeV—PeV) using state-of-the art Artificial Intelligence

To help solving key physics questions: nature of Cosmic Rays & Dark Matter

Project start in 2020, small group for 5 years (PI — Andrii Tykhonov)

Cosmic Rays

Measured with relatively low accuracy at TeV—PeV energies

Key questions unanswered due to large systematic uncertainties

- ▶ Protons: origin of Cosmic Rays after the "break" at ~0.3 TeV?
- Electrons: Dark Matter contribution at multi-TeV energies?

Main goal of the project

Substantially improve measurement accuracy at TeV—PeV energies

Help answering key physics questions

- Cosmic Ray origin and its effects on the Universe composition
- Nature of Dark Matter

Detection Challenge

Approach

Problem	Approach	Expected Improvement	Innovation
Hadronic simulations	Identify and tune parameters of models & cross-sections using DAMPE & HERD data	Hadr. uncertainty from 15–20% to 1–5%	First validation of hadr. models at TeV—PeV energies
Track reconstruction	Apply Artificial Intelligence (AI) for particle hit classification	Charge estimation from 10-15% to 1-3%	First application of AI for particle tracking in Space
Electron identification	Apply Deep Learning to low- level data features for electron-proton discrimination	Proton rejection from 30% to 1–3%	Unconventional use of Machine Learning in Space

Reach at least one order of magnitude higher accuracy

Feasibility

- Improving accuracy of hadronic simulations
 - State-of-the-art models in DAMPE (cooperation with CERN, CORSIKA) ... part of Geant4 release

Expected results in physics

- Develop new Cosmic Ray detection techniques & methods
 - Track reconstruction and electron identification
 - Research program for improving hadronic simulation
- Measure Cosmic Ray Spectra (application to DAMPE)
 - Electrons, using developed electron/proton discrimination technique
 - Protons, using developed tracking & tuned hadronic models

- Long term (application to HERD)
 - Optimise developed techniques & methods for HERD

Summary

- Core precision measurements of TeV–PeV Cosmic Rays
- Aim help understanding origin of Cosmic Rays and Dark Matter
- Plan
 - Develop reconstruction & identification techniques
 - Set up research program for improving hadronic simulations
 - Apply to DAMPE data
 - Long-term: apply to HERD
- Feasibility demonstrated with DAMPE data and simulation
- Interdisciplinary physics, computer science

Ambitious (borderline of risky) project with immediate science impact

Problem of track reconstruction

BACKUP SLIDES

Problem of energy estimation

• Relation between true and deposited proton energy in DAMPE detector

Problem of energy estimation

- Relation between true and deposited proton energy in DAMPE detector
 - ► Example: one bin of deposited energy, 40-63 TeV
 - ► Obtained form simulation with 3 different spectral indices (2.7, 2.8, 2.6)

True energy [TeV]