
Introduction to the Software System 

Based on SNiPER

Xingtao Huang, Meng Wang 
Shandong University

The 8th HERD Workshop
Dec. 16-17, 2019, Xi’an, China



n History
l Founded in 1901
l The 2nd national university 

established in China in Qing Dynasty
l Located in Shandong

2019-12-17

Shandong University 

n Scale 
l 8 Campuses in three cities
l 32 Schools 
l 8 K  Employees
l 1 K Professors
l 40 K Undergraduates
l 11 K Graduates

Happy to join HERD 
Collaboration



n Manpower 
l 7 faculty members on theoretical particle physics
l 25 faculty members (including 5 technicians) on experimental particle physics
l 13 post-docs 

n Experiments and Research Activities

2019-12-17

Research Center for Particle Science and Technology 

Detector Software Physics
ATLAS TGC Top, Higgs
BESIII Framework, tracking Charmonium, light hadron
CEPC Silicon Framework,simulation Higgs
STAR iTPC Spin Physics
Daya Bay/JUNO Framework Theta13
PandaX DAQ Dark matter
LHAASO ED/PMT Framework Gamma sources 
STCF Framework Charmonium, light hadron
HERD under investigation



n Framework
l Introduction to the Framework, SNiPER
l Key Features and Components of SNiPER

n Detector Simulation
l DD4hep: Detector Geometry Description Toolkit
l Detector Simulation within SNiPER

n Event Data Model
l PODIO: Event Data Model Toolkit 

n Software Management
l Computing environment, Tools , Documentation

n Summary

2019-12-17

Outline

4



n Offline 
l Specific to the Physics Experiment 
l Including Generator, Simulation, Calibration , Reconstruction and Analysis

n SNiPER Framework
l Data Processing Management, Event data Management, Common Services…

n External Libraries
l Frequently used third-party software and tools

2019-12-17

Architecture of Offline Software System

5

SNiPER

Generator Analysis

Simulation

Calibration

Reconstruction

Offline
External Libraries ()

ROOT, Geant4, DD4hep, 
PODIO, Boost, Python

……



About SNiPER (I) 
n SNiPER: the “Software for Non-collider Physics ExpeRiment”

l Developed for JUNO experiment 
l But also considered for other non-collider physics experiments

n Design and development 
l Learn a lot from other software frameworks, such as Gaudi
l Based on the valuable experiences from DayaBay experiment
l Coding from scratch since 2012

6

2019-12-17



About SNiPER (II)
n Main goals

l Lightweight, less dependences on third-party software/libs
l Fast and flexible execution
l Easy to learn and convenient to use

n Used by Several Experiments
l JUNO (Jiangmen Underground Neutrino Observatory) in China
l LHAASO (Large High Altitude Air Shower Observatory ) in China
l STCF (Super Tau-Charm Facility) in China
l nEXO (next Enriched Xenon Observatory) in U.S.
l ……

n A Good Team to maintain and optimize
l SDU and IHEP

7

2019-12-17



Key Features of SNiPER (I)

n Highly modular
l Each module is functionally independent
l Main functions for data processing have been implemented 

in kernel modules

n Standard interfaces between different modules
l The interfaces have been very stable 
l People from each experiment only focus on event data 

model, algorithms, detector geometry etc.

n Dynamically loading packages/modules/elements
l New packages can be easily loaded/used as plugins by 

framework 8

2019-12-17



Key Features of SNiPER (II)
n Separation between data and algorithm

l Less coupling between algorithms
l Development of new algorithms at the same time

n Data Store for event data management
l Algorithms retrieve/put event data from/to Data Store

n Flexible event execution
l Sequential execution
l Jump/nested execution

n Support multithreading
l Underlying the intel TBB is deployed
l Multi-tasks naturally maps with multi-threads 9

2019-12-17



Key Components  for Users
n Algorithm
n Service
n Task
n Data Store
n Property
n Logging
n Job Configuration with python
n Multithreading

10

They are dynamically Loaded
Elements (DLElement) and configured 
in python script

2019-12-17



Algorithm
n An unit of code for event execution

l Perform event calculation during event loop

n SNiPER provides the interface, AlgBase

n User’s new algorithm inherits from AlgBase
l Its constructor takes one std::string parameter
l 3 member functions must be implemented

• bool initialize() : called once per Task (at the beginning of a Task)
• bool execute() :   called once per Event
• bool finalize() :   called once per Task (at the end of Task)

n Then, the new algorithms can be called by Framework
11

2019-12-17



Service
n Similar with Algorithm, but

l A piece of code for common use, i.e. GeometrySvc, DatabaseSvc…
l They are called by algorithms or other services, wherever needed 

n SNiPER provides the interface, SvcBase

n New services inherit from SvcBase
l Its constructor takes one std::string parameter
l 2 member functions must be implemented

• bool initialize() : called once per Task (at the beginning of a Task)
• bool finalize() :  called once per Task (at the end of Task)

n New services can be used by all algorithms
12

2019-12-17



Task
n A lightweight application manager

l Consist of algorithms, services and sub-tasks
l Control algorithms’ execution
l Has its own data store and  I/O system  (see next slide)

n One job can have more than one Tasks

13

2019-12-17



n Algorithms in one Task are sequentially executed
l In the order of algorithm position 

n SubTask provides jump execution
l It will be invoked on demand
l After execution, return back to the upper task

14

Algorithm 4

Algorithm 5

Executed on Demand
Algorithm 1

Algorithm 2

Algorithm 3

Event Loop

Algorithm 6

Executed on Demand

TopTask SubTask SubTask

2019-12-17



n Incident provides jump execution procedure
n IncidentMgr correlates incidents with their handlers

l Incident: trigger the execution of corresponding handlers
l IncidentHandler: wrapper of any specific execution procedure

2019-12-17

Incident

15

Incident

string name()
fire()

IIncidentHandler

handle(Incident&)
regist(string)

IIncidentHandler

handle(Incident&)
regist(string)

1. jump

2. back

Sequential Procedure Extra Procedure

1. Regular execution procedure jumps to another extra procedure
2. Back to the original procedure after all corresponding Handlers are executed

n Both Algorithms and Services can fire incidents 
l Root I/O is based on incident mechanism 



Data Store
n It is the dynamically allocated memory place to hold 

events data which are being processed

n Algorithms retrieve event data from the Data Store 
and put new event data back to Data Store

16

2019-12-17



n In Data Store
l Directory Structure
l Unique path

2019-12-17

Layout in Data Store and  Root File

17

u In Root File
ð Tree Structure
ð Tree/branch name

• same with Data Store path



n User interface, SniperDataPtr, is provided to retrieve 
the Event Buffer and Get Current Event with the path

2019-12-17

Standard interfaces for Access to Event Data 

18

n The Service, BufferMemMgr, is used to put/adopt event 
back to Buffer with a unique path

SniperDataPtr<SimCDEvent> navBuf(getScope(), "/Event/Sim/SimCDEvent");
……  m_buf = navBuf.data();
SimCDEvent* nav=m_buf->curEvt();

SniperPtr<IDataMemMgr> mMgr(getScope(), "BufferMemMgr");
SimCDEvent* cdevent = new SimCDEvent();
mMgr->adopt(nav, "/Event/Sim/SimCDEvent");



n Configurable variable at run time

2019-12-17

Property

19

n Algorithm, Service and Task can declare their member 
variable as Property

n Configure a property in Python script

n Types can be declared as properties:
l scalar: C++ build in types and std::string
l std::vector with scalar element type
l std::map with scalar key type and scalar value type



n SniperLog supports different output levels
0: LogTest 2: LogDebug. 3: LogInfo. 4: LogWarn. 5: LogError 6: LogFatal

n Alg/Svc/Task can set their own LogLevel at run time

n The output message includes more information , such as
l where it comes from
l Level of message
l Contents of message

2019-12-17

Logging 

20

very helpful for debugging codes



2019-12-17

Multithreading of SNiPER: MT-SNiPER
n Developed based on Intel TBB.

l Muster: Multiple SNiPER Task Scheduler
l SniperTbbTask: Binding of a SNiPER Task to a TBB task

n JUNO detector simulation works well with MT-SNiPER



A Job Configuration File with python

2019-12-17 22

Helloworld.py

Run it !



n Members of the FCC, ILC, CEPC, SCT, STCF,CLIC, LHC 
communities met for a Future-Collider-Software Workshop in 
Bologna on June 12&13 https://agenda.infn.it/event/19047/ 

n Reached an Agreement to share the common packages or tool and 
create common turnkey software stack(Key4hep) 
l DD4hep for Detector Geometry Description
l PODIO for building Event Data Model (EDM4hep)
l ……

2019-12-17

Integration with other promising tools 



n Developed in AIDA/AIDA2020 , and used by ILD, CLICdp, FCC-ee, FCC-hh, 
CEPC, LHCb, CMS, SCT and STCF.

2019-12-17

DD4hep: a generic Detector Description  
tool for HEP F. Gaede (CHEP2019)

n Support the full life cycle of the 
experiment
l Detector concept development
l Detector optimization
l Construction and operation

n Consistent description with one single data source for
l Simulation, reconstruction and analysis

n Geometry description with compact xml-files and C++ drivers
n Use Root TGeo as geometry implementation
n Provide output formats or interfaces: Geant4 , GDML…



2019-12-17

Detector Simulation within SNiPER
n SNiPER manages detector simulation with Task

l A dedicated algorithm (DetSimAlg) for all sub-detectors simulation
l A dedicated service (DetGeoConsSvc) to convert xml or gdml of DD4hep

to Geant4 
l A dedicated service (G4Svc) to launch Geant4
l A user-end service (DetSimFactory) to set up all the Geant4 related classes



2019-12-17

Overview of Detector Simulation System



n Define geometry and materials in xml files

2019-12-17

DD4hep example: STCF Detector Description

n Construct detector in c++ driver files

n Deliver detector geometry to Geant4



DD4hep example :Geometry management
n Each sub-detector is independent with others, different version in 

different path
n Flexible to build a full detector with different combinations of 

sub-detectors
n Common files for materials and elements

2019-12-17 28



PODIO: an Event Data Model toolkit for HEP
n Based on the use of POD (Plain-Old-Data) for the event data 
n Developed in AIDA2020 and originally for FCC study, but 

potentially to be re-used by other HEP 

2019-12-17 29

F. Gaede (CHEP2019)



2019-12-17 30



Integration of PODIO into SNiPER

n Integrated PODIO into SNiPER
l Define Event Data in the yaml file
l Python script for c++ code generation
l Algorithm uses the Event Data Object
l PODIO writer writes the Event Data into the ROOT file

2019-12-17 31



2019-12-17 32

Yaml file l. C++ codes l. Root File l.



n Programming language: C++ and Python
l C++ :  main part implementation
l Python : job configuration interface

n Packages management tool: CMake
l Help developers to compile packages easily
l Help users to setup the environment for running the application easily

n Operation System: Scientific Linux
l Scientific Linux 6/CentOS 7 or higher
l G++ > 6.5.0 (C++14)

n Version Control System: GitLab
l Keep the history of code evolution
l Synchronization and sharing between developers
l Tag and release

2019-12-17

Software Environments and Management

33



n Installation
l A shell script is provided to Automatically  install the whole offline 

software 

n Documentation
l JUNO User Guider Wiki page
l LodeStar User Guider for LHAASO Experiment
l OSCAR User Guider for STCF Experiment

2019-12-17

Installation and Documentation 



n SNiPER is originally developed for JUNO, also used by 
LHAASO,STCF,CSNS, nEXO…
l Main functions for data processing have been implemented 

n MT-SNiPER is developed to support Multithreading
l JUNO Detector simulation works well

n Some promising toolkits such as DD4hep, PODIO have 
been integrated with SNiPER
l Describe detector geometry with DD4hep
l Define Event Data Model with PODIO

n Most popular tools/compiler have been used
l Cmake, Gitlab, C++14

n Installation toolkits and documentations also provided  
2019-12-17

Summary

35



2019-12-17

Thanks for your attention ! 

Thanks to members of the Working Group:  

Wenhao Huang1, Xingtao Huang1, Qiyun Li1, Weidong Li2, Tao Lin2,
Xueyao Zhang1, Jiaheng Zou2

1SDU , 2IHEP


