HERD Trigger Studies

J. Casaus, F. Giovacchini, M.A. Velasco CIEMAT

A. Oliva

INFN-Bologna

8th HERD Workshop, Xi'an 16-17 December 2019

Introduction

□ The goal of the exercise is to compute the expected particle rates with the baseline design of the trigger

provide a cross check to the reference study in the HERD proposal using newly developed HerdSoftware

Basic ingredients

□ Trigger Definition

□ Simulated Samples

Particle Fluxes

Geometrical Acceptance

- Validation against available tool in HERD Software of a new tool developed to evaluate length in LYSO for each primary track parameters
- Good agreement for computed length inside CALO envelope volume
- □ Ratio of depth in LYSO and length in CALO volume reflects the packing factor of the current crystal arrangement (57%)

Geometrical Acceptance

- □ Evaluation of geometrical acceptance for down going particles as a function of the track length in CALO yields 2.1 m²sr for lengths above 1.5 λ_{I}
- □ The dependence on the packing factor can be easily quantified, e.g., a PF of 69% would increase the geometrical acceptance for lengths above 2.5 λ_1 by a factor 3.7, from 0.15 to 0.55 m²sr, while keeping the current value for lengths above 1.5 λ_1

- The Global Trigger (GT) is obtained from the logical combination of the particle-dedicated sub-triggers, built from the deposited energies in CALO and PSD
 - □ HE (High Energy particle) requires high energy deposition in CALO
 - LEG (Low Energy photon) low energy deposition in CALO and PSD veto
 - LEE (Low Energy Electron) low energy deposition in CALO
 - Unbiased: low energy in CALO, for trigger efficiency evaluation
 - □ Calibration Trigger: low energy deposition in CALO. Specific mode to detect penetrating particles.
- □ CALO trigger inputs are defined based on the total energy deposition in the outmost 3 crystal layers (shell) and in the central crystals (core).
- CALO core and shell inputs map high and low energy particle triggers: Low Energy electrons and photons only fire shell crystals, whereas High Energy particles will fire shell and core crystals
- In practice, 10 shell units (octagon, top, bot.) and 1 core unit are defined.
- **PSD** veto applies to the maximum of the energy depositions per PSD side

MC Samples

- Relevant particle species to evaluate sub-trigger and GT acceptances
- Protons, electrons, gamma and helium nuclei at ~30 fixed energy points logarithmically spaced ranging from 0.1 GeV to 8.2 TeV
- (1-3)x10⁶ particles per particle species and energy point generated isotropically from a hemisphere containing the detector volume
- Only down going particles will be considered
- Trigger logic applied to output files after digitization

Particle Fluxes

- GCR from GALPROP subject to solar modulation and Earth rigidity cutoff
- Under cutoff secondary particles obtained from AMS-01 measurements
 (Caveat: under cutoff flux directionality is not considered yet. Important for HERD)
- No SAA or radiation belts included at this stage
- Lookup tables containing the individual particle fluxes on a grid of orbit positions for solar MIN and MAX have been produced. Only Results for solar MIN are presented
- A geomagnetic cutoff transfer function for isotropic down going particles is obtained for each orbit position and applied to GCR flux

- 1) Science mode is composed of logical OR of individual sub-triggers
 - □ HE (High Energy) Trigger
 - CALO core energy deposition above 10 GeV (Ecore > 10 GeV)
 - HE Average Rate : 54 Hz Max Rate : 55 Hz
 - Proton : Ave.: 38.6 Hz (Max.: 39.0 Hz)
 - Helium : Ave.: 15.4 Hz (Max.: 15.9 Hz)

There are two nominal operation modes of based on the GT configurations

1) Science mode is composed of logical OR of individual sub-triggers

- LEE (Low Energy Electron) Trigger
 - (Eshell > 0.35 GeV AND Ecore < 0.06 GeV) OR (Eshell > 1 GeV AND Ecore < 0.6 GeV)
 N.B. Only shell corresponding to a lateral side where TRD is mounted is considered
 - LEE Average Rate: 43 Hz Max Rate : 138 Hz (East-West effect important at Low E!)
 - Proton : Ave.: 35.3 Hz (Max.: 107.1 Hz)
 - Helium : Ave.: 7.8 Hz (Max.: 30.4 Hz)
 HE LEE

proton – ϕ =400 MV

- 1) Science mode is composed of logical OR of individual sub-triggers
 - LEG (Low Energy Gamma) Trigger
 - Eshell > 0.35 GeV AND PSD veto (PSD Side Energy < 1 MeV)
 - LEG Average Rate: 1.7 Hz Max Rate : 9.5 Hz
 - Proton : Ave.: 1.4 Hz (Max.: 7.9 Hz)
 - Helium : Ave.: 0.3 Hz (Max.: 1.6 Hz)
 - If a PSD inefficiency of 0.1% is included we get a bkg. rate < 10 Hz (see next)

- Science mode is composed of logical OR of individual sub-triggers 1)
 - Unbiased trigger
 - Eshell > 0.35 GeV with 1/1000 prescaling factor
 - UNB Average Rate: 1.8 kHz Max Rate : 5.1 kHz
 - Proton : Ave.: 1.5 kHz (Max.: 4.1 kHz)
 - Helium : Ave.: 0.3 kHz (Max.: 1.0 kHz)

- Science mode is composed of logical OR of individual sub-triggers
 GLOBAL : HE + LEG + LEE + UNB
 - Average Rate: 101 Hz Max Rate : 207 Hz
 - Proton : Ave.: 76.8 Hz (Max.: 158.1 Hz)
 - Helium : Ave.: 23.8 Hz (Max.: 48.9 Hz)

There are two nominal operation modes of based on the GT configurations

2) Calibration Mode

MIP Trigger

- 0.1 GeV < Eshell < 0.8 GeV AND Ecore > 0.5 GeV.
- operated only at the equator (latitudes between -20° and 20°)
- Average Rate: 37 Hz Max Rate : 94 Hz (may change a lot with directional flux!)
 - Proton : Ave.: 35.5 Hz (Max.: 89.6 Hz)
 - Helium : Ave.: 1.8 Hz (Max.: 4.7 Hz)

Summary

- HERD Proposal Trigger scheme replicated on MC files produced with latest HerdSoftware.
- □ We have completed a first implementation of the trigger logic following the description in HERD proposal.
- □ The first results in terms of expected rates show some discrepancies that need to be understood with the help of our IHEP colleagues.
- Being the trigger definition critical in HERD, we propose to set up a team to first tackle this issue and then explore possible optimizations of the trigger scheme to provide maximum physics reach.

- PD readout provides complementary possibilities for HERD trigger since a trigger signal per equipped crystal will be available:
 - Multiplicity and event topology
 - Programmable trigger logic
- Illustration with simple example for MIPs:

- Illustration with simple example for MIPs:
 - Good correlation between total number of fired crystals and depth in LYSO allows selecting MIP events with different lengths in CALO

- Illustration with simple example for MIPs:
 - Good correlation between total number of fired crystals and depth in LYSO allows selecting MIP events with different lengths in CALO

- Illustration with simple example for MIPs:
 - Good correlation between the maximum of (x,y,z)-projection and the number of fired crystals and depth in LYSO allows selecting MIPs from interacting particles

- Illustration with simple example for MIPs:
 - Highly pure MIP sample selected at trigger level

There are two nominal operation modes of based on the GT configurations

Calibration Mode 2)

MIP Topo

- Ncry > 5 && Δ Ncry < 2
- operated only at the equator (latitudes between -20° and 20°)
- Average Rate: 697 Hz Max Rate : 3971 Hz
 - Proton : Ave.: 660.6 Hz (Max.: 3826.1 Hz)
 - Helium : Ave.: 36.2 Hz (Max.: 144.5 Hz)

proton – ϕ =400 MV

Summary

- HERD Proposal Trigger scheme replicated on MC files produced with latest HerdSoftware.
- □ We have completed a first implementation of the trigger logic following the description in HERD proposal.
- □ The first results in terms of expected rates show some discrepancies that need to be understood with the help of our IHEP colleagues.
- Being the trigger definition critical in HERD, we propose to set up a team to first tackle this issue and then explore possible optimizations of the trigger scheme to provide maximum physics reach.
- Detector offers new possibilities also for trigger improvements. We should also profit from the forthcoming massive MC simulation to address them.