

A PFA Fast Simulation Tool

Why need a Fast Simulation?

Fast Simulation

Particle Flow Algorithm (PFA)

Measure different particles in optimal sub-detector!

E _{jet} =	Echarged	+ E _y +	Eh ⁰
	65%	25%	10%
	innermost layer tracking electromagnet system calorimeter	→ outermost lay tic hadronic muon calorimeter system	/er
photons	₩¥		
electrons			
muons			
protons Kaons pions	- Kat	A CONTRACTOR	
K_{L}^{0}	- * *	****	
		C. Lippmann – 20	03

Charged particles - Tracker ~ 0.1%Photons- ECAL~ 15%Neutral hadrons- HCAL~ 50%

Validation with full simulation

Chinese Physics C Vol. 43, No. 2 (2019) 023001

https://iopscience.iop.org/article/10.1088/1674-1137/43/2/023001/pdf

The Higgs signatures at the CEPC CDR baseline^{*}

Hang Zhao(赵航)^{1,2,3} Yong-Feng Zhu(朱永峰)^{1,4} Cheng-Dong Fu(傅成栋)¹ Dan Yu(于丹)¹ Man-Qi Ruan(阮曼奇)^{1,2;1)}

¹Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ²CAS Center for Excellence in Particle Physics, Beijing 100049, China ³Collaborative Innovation Center for Particles and Interactions, Hefei 230026, China ⁴University of Chinese Academy of Sciences, Beijing 100049, China

Sample

vvH, $H \rightarrow gg$ with event cleaning

Table 1. Event cumulative efficiency for Higgs boson exclusive decay at the CEPC with $\sqrt{s} = 240$ GeV.

	gg(%)	<i>bb</i> (%)	cc(%)	<i>WW</i> *(%)	ZZ* (%)
$Pt_{ISR} < 1 GeV$	95.15	95.37	95.30	95.16	95.24
Pt_neutrino < 1 GeV	89.33	39.04	66.36	37.46	41.39
Cos(Theta_Jet) < 0.85	67.30	28.65	49.31	_	_

Quantification of Higgs Mass Resolution (HMR)

RMS/Mean instead of fitting

HMR is composed of

Sub-detector resolution Reconstruction efficiency, threshold of $E(P_t)$ Acceptance Fragmentation of charged hadron, HMR ~ 3.75% Separation confusion, HMR ~ 3.83%

Contribution of each effect to HMR

Sub-detector Resolution

HCAL stochastic term > ECAL stochastic term > HCAL constant term > ECAL constant term ~ Tracker resolution

Threshold

Fragmentation of Charged Hadron The most severe effect! ~ 35%

Confusion between nearby clusters

Baseline parameters: ECAL resolution = $17.1\%/\sqrt{E \oplus 1\%}$ & Photon energy threshold = 200 MeV

Conclusion

Effects already considered

Sub-detector resolution Reconstruction efficiency, threshold of $E(P_t)$ Acceptance Fragmentation of charged hadron Overlapping between nearby clusters

Other effects will be considered next (HMR~3.83%->4.2%)

Tracker material, interaction inside tracker

•••

Fragmentation of charged hadron The most severe effect! ~ 35%

Pattern of fragments from full simulation Potential of using time information to deal with slower fragments

Backup

Confusion between nearby clusters

ECAL resolution = $2\%/\sqrt{E \oplus 1\%}$ & *Photon energy threshold* = 50MeV

0.08

0.06

A.U./0.8 GeV

0.02

0

RMS/Mean ~ 4.23%

~7%的事例中没有中性强子

