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Motivation and MHD-PIC method
Application 1: CR acceleration in collisionless shocks
Application 2: CR streaming instability

Future directions



How do CRs interact with a thermal plasmar

= CRs are collisionless and diffuse by scattering off MHD waves/turbulence:

Galactic CRs’ residence time: ~10s Myr in total.
Diffusion coefficient: kK ~ R2/T ~ a few x 1028cm?2s-1.  (e.g., Ginzburg & Syrovatskii 64)
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= CRs provide pressure support: F'= —V | Pcr = —

= When the bulk CRs drift through background plasma faster than the
Alfven speed vp,cr > va , they will drive streaming instabilities.

(e.g., Kulsrud & Pearce 1969, Bell 2004)

Need kinetic physics: CRs transfer energy/momentum to gas via Alfven waves.

Qctive CR feedbackD




Simulating CR physics at kinetic level

=  Minimum requirement: resolve CR gyro-radii.

= Huge scale separation involved, challenging for conventional PIC codes:

e FUull-PIC: treat all (background+CR) particles as kinetic particles

o Hybrid-PIC: all ions (background+CR) are kinetic, electrons as massless fluid
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Simulating CR physics at kinetic level

=  Minimum requirement: resolve CR gyro-radii.

= Overcome this scale separation: skipping over the kinetic scales of the
background plasma.

e MHD-PIC: treat background plasma by MHD, while CRs are kinetic
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MHD-PIC approach

Each computational particle (i.e., super-
particle) represents a large collection of
real CR particles.

Each super-particle carries an effective
shape, designed to facilitate interpolation
from the grid.

Individual CR particles move under the
electro-magnetic field from MHD.

Total momentum and energy must
conserve: particles feedback to MHD
cells by depositing changes in
momentum and energy locally.
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MHD-PIC: formulation and implementation

Equations for the (relativistic) CR particles:

d(yu5) _ ﬁ(E_i_ﬂ ><B>

dt m; C

Specify the numerical speed of light ¢ >> any velocities in MHD.

Full equations for the gas:

% + V- (pvv — BB + P*) = - Lorentz force on the CRs

%_f + V- |[(E+ P )v— B(B - v)| = - energy change rate on the CRs

Implemented in the Athena MHD code (Bai, Caprioli, Sironi & Spitkovsky 2015).

(See also van Marle et al. 2018, Mignone et al. 2018)
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Non-relativistic shock: MHD-PIC simulation

Density Bai+ 2015
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Fiducial parameters: M,~30, parallel shock 6=0.

Resolution: 12 ion skin depths per cell (v.s. 0.5 in hybrid-PIC)

Particle injection: artificial (as proof-of-concept) n=2x 10"
(to be improved in the near future)



‘ Particle acceleration
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‘ Simulation with relativistic particles

Set numerical speed of light ¢ a factor ~10-20 larger than v, to follow
particle acceleration to relativistic regime.

¢ (t=840027)
4800

tot

x [clo]

Very large box size (4800 c/w,; wide), and very long evolution (~10°Q,1)

Reduction of shock speed toward later evolution.



Particle acceleration into relativistic regime
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Evolution of maximum particle energy
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Resonant CR streaming instability (CRSI)

When the bulk drift of the CRs exceed the Alfven velocity, they resonantly
trigger the CR streaming instability.

Characteristic growth rate:

NCR(p > pres(k)) Up — VA
T; VA

['(k) ~ Q.

Driven primarily by low-energy CRs (the dominant population by number)

(e.g., Kulsrud & Pearce 69, Skilling 75)

Important feedback mechanism to galaxy formation and evolution:

e CR self-confinement
o CR-drive galactic outflows



Matching analytical dispersion relation
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Accurately
reproduce the linear
growth rate over
broad spectrum.



‘ 1D simulation: growth and saturation

Wave form:
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Simulation performed in
the rest frame of the CRs.

Periodic BC.

Gas travels to the left at vp.

Fiducial
parameters:

Vp=2V,
Ncr/ng=104
Po/M=300v,

2048 ppc, Lx~50 most
unstable wavelength.



Towards saturation: quasi-linear diffusion
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Reduction of CR drift speeds

Wave Frame
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Future directions

Incorporate wave damping physics
Incorporate multi-phase ISM
Other gyro-resonant instabilities
CR source problem

CR escape

Towards 2D/3D



Summary

Motivation and development of MHD-PIC method
> To study kinetic aspect of CRs interacting with background plasmas

> PIC for CRs, MHD for background plasmas, valid on scales > ion skin
depth, implemented to Athena MHD code (fully conservative).

MHD-PIC simulations of CR acceleration

> Reproduce hybrid-PIC results using much larger box at much reduced
cost, and can follow CR acceleration to relativistic regime.

> Need (artificial) injection prescription.
MHD-PIC simulations of resonant CR streaming instability

~ Overcome the challenges: developed of method to reduce noise

» First numerical study: confirmation of linear growth rates, and can
follow CR quasi-linear evolution, overcome 90deg problem.

Future: more realistic microphysics, CR escape...



