### INVERSE COMPTON SIGNATURES OF GAMMA-RAY BURSTS USING FERMI-LAT DATA

P. H. Thomas Tam (Sun Yat-sen University, 中山大學)

2020.I.9

### Gamma-ray bursts

- \* Intense bursts of gamma-rays
- \* Duration: -10ms hundreds of seconds
- \* happen at a random position on the sky never repeat





Known to be cosmological isotropically distributed

## "Schematic" multi-wavelength AFTERGLOW light curve



## The Fireball Model





GRB 080916C

#### (1) prompt GeV





GRB 090510

### Second component during PROMPT PHASE

#### GRB 090902B

#### (a) v F, (arg/cm²/s) 10\*\* 10<sup>8</sup> 10-5 10 Time-integrated photon spectrum (0.5 s - 1.0 s) 101 vF<sub>v</sub> (erg/cm<sup>2</sup>/s) 105 F, (arg/cm<sup>2</sup>/s) 10 ced) + PL 10-7 10<sup>6</sup> 107 10<sup>3</sup> 10<sup>2</sup> 10<sup>4</sup> 10<sup>5</sup> 10 107 10<sup>2</sup> 10<sup>9</sup> 10 104 105 10<sup>0</sup> Energy (keV) Energy (keV) 10 GeV 10 GeV Ackermann, et al. 2010 Abdo et al. (2009) Lack of photon statistics from Fermi-LAT -10 sec after trigger ~1 sec after trigger

### (1) prompt GeV

### Second component during PROMPT PHASE

#### GRB 090902B

#### GRB 090510





#### Abdo et al. (2010)

\*Well established synchrotron radio-opt-X emission from external shock electrons

\*GeV afterglow naturally comes from synchrotron as well

### (2) afterglow GeV

### Synchrotron or not synchrotron?

- \* Synchrotron emission from external shock electrons (e.g., Kumar & Barniol 2009, Ghisellini et al. 2010) becomes the 'standard' radiation mechanism in the Fermi era
- \* but there exists a maximum synchrotron energy, typically <<10 GeV</p>
- \* Inverse Compton emission was suggested back in ~2000

### <u>Afterglow inverse-</u> <u>Compton Spectra</u>

- Synchrotron-self-Compton emission from the same electrons
- Simple scaling in the Thomson regime

 $\nu^{\rm IC} = 2\gamma^2 \nu$ 

Chiang & Dermer 1999 Sari & Esin 2001 Zhang & Meszaros 2001

We are likely observing now in the VHE regime c.f. talks in this section



## WHAT DO WE SEE ABOVE A FEW GEV ?

## Very bright GRB 130427A

#### A good case to look deep into the issue





# Very bright GRB 130427A

A good case to look deep into the issue



Fan, Tam, et al. (2013)

\* GRB 130427A emits many GeV gamma-rays during the prompt & afterglow period

\* a 95 GeV photon arrived at  $T_0$  + 243s, corresponding to an intrinsic photon energy 128 GeV at z=0.34

## Origin of the afterglow GeV

- \* Synchrotron emission (e.g., Kumar & Barniol 2009, Ghisellini et al. 2010) can explain <a few GeV emission
- \* but there exists a maximum synchrotron energy, it is hard to explain the >10 GeV photons



$$\begin{split} \epsilon_{\rm syn,M} &\sim 100 \ {\rm MeV} \ \Gamma(1+z)^{-1} \\ &\sim \begin{cases} 20 \ {\rm GeV} \ E_{{\rm k},54}^{1/8} n_{-2}^{-1/8} t_2^{-3/8} (\frac{1+z}{1.34})^{-5/8}, {\rm ISM}; \\ 15 \ {\rm GeV} \ E_{{\rm k},54}^{1/4} A_{*,-2}^{-1/4} t_2^{-1/4} (\frac{1+z}{1.34})^{1/4}, \ {\rm wind}; \end{cases} \end{split}$$

Fan, Tam, et al. (2013) also see Ackermann et al. (2013)





#### Ackermann et al. (2014)

| $t-T_0$ (sec)                                                                    | Power Law (PL)<br>Γ                                                                                                   | $\Gamma_1 \ (E < E_{\rm b})$                       | Broken Power Law (BPL)<br>$\Gamma_2 \ (E > E_b)$       | $E_{\rm b}~({\rm GeV})$                         | $\begin{array}{c} \text{Improvement of BPL over } \mathrm{PL}^{\mathbf{a}} \\ (\sigma) \end{array}$ |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $\begin{array}{r} 0-20\\ 20-138\\ 138-750\\ 3000-80,000\\ 138-80,000\end{array}$ | $\begin{array}{r} -2.0{\pm}0.2\\ -1.9{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\\ -2.1{\pm}0.1\end{array}$ | $-2.2 \pm 0.1$<br>$-2.6 \pm 0.7$<br>$-2.3 \pm 0.2$ | <br>-1.4 $\pm$ 0.2<br>-1.4 $\pm$ 0.2<br>-1.4 $\pm$ 0.1 | $4.3{\pm}2.0$<br>$1.1{\pm}0.9$<br>$2.5{\pm}1.1$ | <br>2.5<br>2.9<br>3.5                                                                               |
| <sup>a</sup> calculated a                                                        | $s \sqrt{2 \times [\log(\mathcal{L}_{\text{BPL}})]}$                                                                  | $-\log(\mathcal{L}_{\mathrm{PL}})]$                | Significance of broken power lav                       |                                                 |                                                                                                     |
| Power la                                                                         | w index does                                                                                                          | n't change!                                        | Tam et al. (2                                          | 013)                                            | over power law                                                                                      |

### Inverse Compton emission can explain the hard component



Liu et al. (2013)

Note that VERITAS did not see this GRB starting  $T_{0}$ +20 hours (Aliu et al. 2014)



(Tang, Tam & Wang, 2014)

Liu, B. et al. (2014)

A larger sample (Panaitescu 2017, up to ~1ks)



### A larger sample (up to 1 day)



He+ in preparation

A larger sample (up to 1 day)



He+ in preparation

## Conclusions

- \* Inverse Compton afterglow is rather common in LAT GRBs
- \* TeV emission established, also from IC
- \* LHAASO-WCDA will detect GRBs!

## SPARE SLIDES



