

X-ray Chandra gallery

Supernova Remnants A y-ray view

F. Acero, AIM/CEA-Saclay

Structure of a Supernova Remnant

Diffusive Shock Acceleration

• Fermi acceleration process

Explore CRs properties via their radiations

Explore CRs properties via their radiations

Explore CRs properties via their radiations

High energy radiation

HFSS

CTA Large telescope in Canary

Inaugurated in Oct. 2018

23m diameter mirror 100 Tons Camera 2 Tons

First gamma-rays, december 2019

What if we had (TeV) gamma-ray eyes

. 🕐

Galactic Center as seen from Namibia

(a) F.Acero & H. Gast for the HESS collaboration

Galactic plane seen by HESS

HESS JITORAID

HESS JITIA.385

HESS JITLE SI

HESS IIT31-347

HESS HITAS: 2013

HESS JITAL-302 HESS JITAS-290

-07

HESS JITAT-281

HESS J1804-216 0

HESS J1809-193

HESS JISIJ-ITS

HESS Herbert His

HESS J1825-137

HESS 11833-105

HESS J1834-087 HESS J1837-069

HESS JI841-055

HESS Heatsons HESS J1846-029 HESS HEARINS HESS 11849-000

HESS 11614-518 HESS JIG16-SU8

HESS J1626-490

IESS 11632-478 THAT HEAT AND IESS J1640-465

SNR RX J1713

HESS JIHI8-609

HESS J1356-645

HESS J1420-607 608

HESS J1442-624

HESS J1507-622

O HESS IIS14-S91

PWN HESS J1825

HESS HTOP

THESS JITIN 335

(c) F.Acero & H. Gast for the HESS collaboration

Pulsar Wind

Nebulae

Supernova

Remnant

HESS 11858+020 HESS J1857+026

Galactic plane seen by HESS

TeVCat Source Types (225 total)

(c) F.Acero & H. Gast for the HESS collaboration

HESS JI85940

Shell morphology

young SNR \sim 1000 ans

Vela Jr, RX J1713-3946, RCW 86, SN 1006, HESS J1731

Interacting SNR

middle-aged t~10 kyrs

IC 443, W28, W51, etc

GeV/TeV populations

- Middle-aged interacting GeV bright SNRs (hadronic emission)
- Young TeV bright shell SNRs

Age - GeV index

Young SNRs: Tycho & CasA

• Youngest SNRs have a steep TeV index. Not the best PeVatrons. Why ?

- Particle spectral index is not 2.0 !
- Emission dominated by shock interacting with a massive clump ?
- High density and high speed are not easily compatible $\frac{0.9}{0.4}$

Fit residuals

0.2

-0.2

-0.4

Emerging picture: age & environment effects

Time evolution of gamma-ray emission from SNRs

T<100 yrs

Circumstellar medium

High density Possible hadronic γ-ray Leptonic γ-ray

Leptonic γ-ray +hadronic from clumps

Emerging picture: age & environment effects

Time evolution of gamma-ray emission from SNRs

SNR RX J1713-3946

- Core Collapse supernova. Age ~ 1600 yrs (Historical SN 393). d ~ 1kpc
- Young SNR with fast shock ~3500 km/s
- X-ray emission is synchrotron dominated
- Brightest TeV SNR

γ-ray emission : leptonic or hadronic ?

Both models need Broken Power-Law spectra

- Broad Leptonic peak: several e⁻ population, time evolution (cooling) (Fink & Dermer 2012, Lee 2012)
- Hadronic: one zone proton model Γ=2 doesn't work
 —> proton interacting with small clumps
 (Gabici & Aharonian 2014, following Zirakashvili & Aharonian 2010 and Inoue 2012, Inoue 2019, Celli 2019)

Reality : mix of leptonic+hadronic ?

Progenitor star blows a bubble leaving cavity with some clumplets

Progenitor star blows a bubble leaving cavity with some clumps

• Progenitor star blows a bubble leaving cavity with some clumplets

• Progenitor star blows a bubble leaving cavity with some clumplets

SNR - MC interaction

Core C: X-ray/CO anti-correlation

Anti-correlation & no X-ray energy dependence

Core C: X/CO anti-correlation

An increased B-field on the envelope shields the cloud from CRs penetration (e.g Inoue+19, Celli+19).

- The fact that no X-ray peak from cloud center at 5 keV indicate that high energy e- do not penetrate cloud deeper than low energy e-.
- Cooling effect of e- ?

Cloud-Shock geometry

Expected N_H from clump ~ 3x10²² cm⁻²

RX J1713 - PeVatron hadronic tail

LHAASO high zenith observations

RX J1713.7-3946

Plotted HESS J1731-347 RA,Dec = (263.012500,-34.755000) for year 2020.000000 at lat,lon = 29.358000,100.139000

Conclusion

- X-rays : constrain environment, progenitor, electron population
- γ-rays : best way to probe proton population but need high density
- SNR/CR paradigm: Accel. e⁻ and protons OK
 Energy budget ~OK
 Reaching 10¹⁵ eV X not even in CasA & Tycho
- Interacting & shell SNRs:
 - age + environmental effect create a variety of spectral shapes
 - some probe e- population some the proton population
 - Large molecular cloud slow down shock. No high speed, high density
- Clear clump (core C) / shock interaction in RX J1713
 - Core C size 0.3-0.5 pc similar to size in clump scenario (0.1 pc)
 - ¹²CO, ¹³CO, CS tracer anti correlate with X-rays synchrotron
 - TeV spectra of clump ? Small scale spectroscopy with CTA
 - LHAASO to probe a PeVatron tail in SNRs

Gammapy: open-source Python package for γ-ray astronomy

https://gammapy.org/

• Community developed tool based on Numpy & Astropy

A **Python** package for **gamma-ray** astronomy

- Used in HESS and CTA collaborations:
 - Sky map production, 1D/3D spectral & time analysis
 - Multiple telescopes: joint Fermi+HESS (+LHAASO?) analyis, multi-messenger
- Use case for PeVatrons :
 - Likelihood with physical hadronic model (naima) on data instead of flux points
 - Measure errors and explore correlations with Markov Chain Monte Carlo

