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Plan of the talk

Properties of turbulence and magnetic reconnection



Astrophysical flows are turbulent due to large Reynolds
humbers

Re = LV/v = (L?/v)/(L/V) = Tait f | Teddy

Astrophysical flows have Re> 10

For reference: Numerical Re<10¢ and this is a problem of brute force approach.



Turbulence is a chaotic order
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It is important to know the laws of this order and use them



Kolmogorov theory reveals order in chaos for incompressible
hydro turbulence
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ISM reveals Kolmogorov spectrum of electron

density fluctuations
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MHD turbulence is anisotropic: contours of turbulent
velocities are aligned parallel to B
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In contrast to isotropic
Kolmogorov turbulence
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LV99 model extends Sweet-Parker model for turbulent
astrophysical plasmas and makes reconnection fast
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Outflow is determined by
field wandering.

Turbulent model

More theoretical works on

turbulent reconnection: N B dissipates on a small
AL, Vishniac & Cho 2004 — . * scale A determined by
Eynik, AL, Vishniac 2011 %ot S—~—~_——" turbulence statistics.
Eyink 2015 ‘Ly o T ———

blow up

AL & Vishniac (1999)



Testing of LV99 predictions: rate of reconnection versus the

level of turbulence

LV99 prediction is Ve~ Pin;''2
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Kowal et al. 2012



Self-reconnection corresponds to the expectations
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Simulations by Kowal 2019 are 2048 x 8192 x 2048



Turbulent reconnection explains solar wind data

PHYSICAL
REVIEW
[ _ETTERS.

Articles published week ending 10 JULY 2015

Lalescu et al. 2015

s s Solar flares also correspond to the
American Physical Society. hvstes Volume 115, Number 2 T .
Py predictions of turbulent reconnection theory

(Chitta & AL 2019)



Without turbulent reconnection magnetic fields
would create knots

Heusen 2017




Turbulent reconnection allows mixing of
magnetic field perpendicular to B-direction

AL & Vishniac 99

Heusen 2017




Derivation of MHD turbulence spectrum assuming turbulent

reconnection

e Critical balance

« Constancy of energy cascade rate
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Kolmogorov perpendicular spectrum and more and more elongated eddies at small scales



v,~1,3  are Goldreich-Sridhar 1995 relations derived in
| g 203 the frame of mean field
=tz

Numerical simulations show that the GS95 relations (Cho
& Vishniac 2000, Maron & Goldreich 2001, Cho, AL &

Vishniac 2002) are not valid in the mean magnetic field
reference system.

P. Goldreich

Local system of reference must be adopted



Note in passing: turbulent reconnection is the violation
of the textbook flux freezing

p Reconnection diffusion illystration
2 1w 2 4

H. Alfven

Alfven theorem is violated in
turbulent media!

AL 2007

Confirmed by Eyink et al (2013 numerical paper in Nature)
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CR perpendicular transport



AL & Vishniac 1999 predicted that particles moving along
magnetic field lines get separated as s%?

Simplified illustration: i 5
_

N

Y2
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(Jy1(s) — yz(S)\2> ~ 8>

This law was termed in Eyink, AL & Vishniac (2011) Richardson spatial diffusion law



In the presence of turbulence dynamically important B-field its
lines stochastic separate in proportion s° M,*

Moving along magnetic field lines distance l|| one gets the mean squared separation (0 2} 2

d(d?) (6%

Y

ds T

(1)

For subAlfvenic turbulence magnetic field lines at distance l|| are mixed by
turbulent eddies with parallel size

0
Uy ~ L(5)** My 2
L
Comgining with Eqs. (1) and (2) one gets (AL & Vishniac 1999):
3
S
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The predicted fast divergence of magnetic fields
was confirmed with MHD turbulence simulations
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,C is turbulence injection scale

See also simulations in Maron & Chandran (2004)



Higher resolution made it more obvious
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Naturally, particles streaming freely along magnetic field lines

show the same superdiffusion as magnetic field lines
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Different regimes of Alfvenic turbulence provide
different regimes of B-field line separation

Type Injection Range Spectrum  Motion Ways Magnetic Squared separation
of MHD turbulence velocity of scales E(k) type of study  diffusion of lines
Weak VI <Va  [lirans, L] kf wave-like  analytical  diffusion ~sLM f‘
Strong anisotropic .
subAlfvenic Vo, <V [lminsdtrans]  k7>®  eddy-like numerical Richardson ~ M
Strong | isotropic
superAlfvenic Vi >Va  [la, L] k7°°  eddy-like numerical diffusion ~ slg
Strong anisotropic ’
superAlfvenic Vi >Va  [lmin)la  k7”®  eddy-like numerical Richardson ~ S M3

L and lpin are the injection and perpendicular dissipation scales, respectively. M4 = dB/B, lirans = L]\-{:_,‘Zx for Mg <landly = L.n‘l-'I‘_;3
for M4 < 1. For weak Alfvenic turbulence £; does not change. s is measured along magnetic field lines.
| AL & Yan 2014



If cosmic rays diffuse along B-field lines, it is still superdiffusion
in terms of perpendicular displacement

2
Substitute parallel displacement S —— D || 5 L

: e : : 2 5% 4
In the expression for the magnetic field perpendicular displacement (6°) ~ T M 4

(D”(%)B/Q
L

One gets <5%R> ~ Mi

Which means <5%’R>1/2 ~ 5t3/4



For CR diffusing along magnetic field lines the perpendicular
displacement is superdiffusive ~ t¥

Xu & Yan 13
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The predicted dependence on M,* has been carefully tested
by Xu & Yan (2013)

CR trajectories for different M,




SubAlfvenic turbulence: forth power of Alfven Mach number

On scales s > L and s>> mfp the ordinary diffusion is present (AL06, Yan & AL08)
DL,g]obal ~ D”Mj,

On scales < L and s< mfp, CRs trace magnetic field divergence £ ~ L My,

On scales < L and s >> mfp, CRs trace magnetic field divergence, s is covered in
diffusion process (D 51)*2

2 .~
L1,CR 27L

M5, My <1,

Differs from the textbook (see Jokipii & Parker 69) M,? dependence



For free streaming along B-field lines the dependence on M,*
is confirmed
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On scales >> L the parallel and perpendicular diffusion are
related through M,*
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Implications for CR acceleration



Turbulent reconnection induces First Order Fermi acceleration

ViV
P — - -
A
VA (similar mechanism but in 2D is
—= proposed in Drake et al. 2006).
N(E)dE ~ E~%/2dE
— — — .
VR¢ From Lazarian 05

De Gouveia Dal Pino & Lazarian 2005

In 3D there are no islands thus the acceleration is more efficient



Superdiffusion prevents the particles to return
back to a perpendicular shock

Lo ! Accepted expression

K| 1+ ()\C'R/’I’L)Q

Superdiffusion in a perpendicular shock

U

In reality

AL & Yan 2014



Precursor forms in front of the shock and it gets turbulent as
precursor interacts with gas density fluctuation
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Much more efficient than Bell’s mechanism




Numerical simulations support predictions of
turbulent dynamo in a precursor

Figure 4. Final density distribution in a central cut of the zy-plane of the computational box for Model AI (upper panel) and for Model
BI (bottom panel). The parameters of the models are listed in Table 1.
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Figure 5. Final distribution of the magnetic energy in a central cut of the zy-plane of the computational box for Model AI (upper
panel) and for Model BI (bottom panel). The parameters of the models are listed in Table 1.

Del Valle, AL, Santos-Lima 2016

First simulations supporting the model are Drury & Downes 2012



Turbulent dynamo makes parallel and perpendicular shocks
similar with particles returning to shocks with precursors
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shock AL & Yan 2014

Synthesis: dynamo and magnetic field structure theories



Summary:

Actual properties of MHD turbulence must be accounted for CR
transport and acceleration

Divergence of turbulent magnetic field lines makes
CRs transport superdiffusive

Turbulent dynamo makes shock acceleration much
/,,;;/ﬁ-Axis very different from the accepted DSA
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