Gamma-Ray Emission from Compact Binary Systems

Dmitry Khangulyan Rikkyo University (Tokyo)

The 10th International Workshop on Air Shower Detection at High Altitudes Nanjing, January 1/10/2020

D.Khangulyan γ -ray emission from binary systems

OUTLINE

- A short introduction
 - Gamma-ray emitting binary zoo
- Gamma-ray binaries as multi-TeV sources
 - Why the acceleration process may go beyond a few TeV
- What is the nature of the most extreme gamma-ray binaries

Recent hints from X-ray observations

- Do we expect multi-component acceleration in gamma-ray binaries?
 - Analysis of the Crab Nebula spectrum

D.Khangulyan

Symbiotic recurrent nova V407 Cyg: powered by accreting white dwarf

D.Khangulyan γ -ray emission from binary systems

- SS433: Microquasar with bright non-thermal radio and X-ray emission (Feldman+1978, Marshall+1978, Mirabel&Rogríguez 1999)
- Microquasar SS433 features the most powerful Galactic jets with L_{kin} = 10³⁹ erg/s
- These jets are subrelativistic ($v \sim 0.26c$)

BS with detected γ rays

System	Star	Star*	Ρ	VHE	HE	X-ray
PSR B1259-63/LS2883	р	O/Be	1237d	periodic	variable	periodic
LS 5039	?	0	3.9d	periodic	periodic	periodic
LS I +61+303	?	Be	27d	variable	periodic	variable
HESS J0632+057	?	Be	320d	variable	—	variable
1FGL J1018.6-5856	?	0	17d	variable	periodic	variable
PSR J2032+4127/MT91 213	р	Be	50yr	variable	—	variable
LMC P3	?	0	10d	periodic	periodic	variable
Cyg X-3	bh	WR	4.8h	_	flare	_
Cyg X-1	bh	0	5.6d	flare	—	_
SS433	bh	А	13d	_	steady	steady
V407 Cyg	WD	RG	40yr	_	flare	flare
η Car	BG	WR	5.5yr	variable(?)	variable	variable

D.Khangulyan

 $\gamma\text{-}\mathrm{ray}\xspace$ emission from binary systems

BS with detected γ rays

System	Star	Star*	Р	VHE	HE	X-ray
PSR B1259-63/LS2883	р	O/Be	1237d	periodic	variable	periodic
LS 5039	?	0	3.9d	periodic	periodic	periodic
LS I +61+303	?	Be	27d	variable	periodic	variable
HESS J0632+057	?	Be	320d	variable	—	variable
1FGL J1018.6-5856	?	0	17d	variable	periodic	variable
PSR J2032+4127/MT91 213	р	Be	50yr	variable	—	variable
LMC P3	?	0	10d	periodic	periodic	variable
Cyg X-3	bh	WR	4.8h	_	flare	_
Cyg X-1	bh	0	5.6d	flare	—	—
SS433	bh	А	13d	—	steady	steady
V407 Cyg	WD	RG	40yr	_	flare	flare
η Car	BG	WR	5.5yr	variable(?)	variable	variable

D.Khangulyan

BS with detected γ rays

Star	Star*	Р	VHE	HE	X-ray
р	O/Be	1237d	periodic	variable	periodic
? Г		, ³ Ê :	periodic	periodic	periodic
d-L	٦dy	212		riodic	variable
?	Ве	320d	variable		variable
?	0	17d	variable	periodic	variable
р	Be	50yr	variable		variable
?	0	10d	periodic	periodic	variable
bh	WR	4.8h	—	flare	—
Do	.9 E	5.6d	tting	DC	
LP/G	ιy c	13d	ung	etaty	steady
WD	RG	40yr	_	flare	flare
BG	WR	5.5yr	variable(?)	variable	variable
period	- 3.4 ye	ars		100	
	and a fill			and the second	
	star P ? P ? P ? bh Ra wD BG	Star Star* p O/Be ? Ray ? Be ? O ? Be ? O bh WR Base O WD RG BG WR	Star P p O/Be 1237d 2 O 3 P O 320d P O 17d P Be 50yr P 0 10d bh WR 4.8h C F.6d 40yr BG WR 5.5yr	StarPVHEpO/Be1237dperiodic?O1237dperiodic?Be320dvariable?O17dvariablepBe50yrvariable?O10dperiodicbhWR4.8hFrageWDRG40yrBGWR5.5yrvariable(?)	StarStar*PVHEHEpO/Be1237dperiodicvariable?O3Diriodicperiodic?Be320dvariable?O17dvariableperiodicpBe50yrvariable?O10dperiodicperiodicbhWR4.8hflareBe5.6dflareWDRG40yrflareBGWR5.5yrvariable(?)variable

periastron eco	004		12			9
BS with detected γ rays	Star	Star*	Ρ	VHE	HE	X-ray
PSR B1259-63/LS2883	р	O/Be	1237d	periodic	variable	periodic
LS 5039	?	0	3.9d	periodic	periodic	periodic
LS I +61+303	?	Be	27d	variable	periodic	variable
HESS J0632+057	?	Be	320d	variable	_	variable
1FGL J1018.6-5856	?	0	17d	variable	periodic	variable
PSR J2032+4127/MT91 213	р	Be	50yr	variable	_	variable
LMC P3	?	0	10d	periodic	periodic	variable
Суд Х-З	bh	WR	4.8h	_	flare	_
Cyg X-1	bh	0	5.6d	flare	_	_
SS433	bh	А	13d	_	steady	steady
V407 Cyg	WD	RG	40yr	_	flare	flare
η Car	BG	WR	5.5yr	variable(?)	variable	variable

 γ -ray binaries

D.Khangulyan

- Hard non-thermal X-ray emission
- Detected TeV emission
- Contains luminous star
- SED is dominated in gamma-rays
- Contains non-acreting pulsar

System	VHE	X-ray	Star	SED	PSR	
PSR B1259-63/LS2883	V		V	X	v	
LS 5039	V	Nhy	V	V	×	.3
LS I +61+303	v	is th	V	V	×	
HESS J0632+057	v	atin	V	X	×	- 15
1FGL J1018.6-5856	v	npor	V	V	×	.1
PSR J2032+4127/MT91 213	V	tant	V	V	×	
LMC P3	v		V	V	X	
Note that 🗸 means YES; X means we don't know						

D.Khangulyan

 $\gamma\text{-}\mathrm{ray}$ emission from binary systems

Energy Distribution of Electrons in Binary Systems

Particle acceleration in γ -ray binary systems

Criteria for Gamma-Ray Binary:

- Hard non-thermal X-ray emission
- Detected TeV emission
- Contains luminous star
- SED is dominated in gamma-rays
- Contains non-acreting pulsar

System	VHE	X-ray	Star	SED	PSR	
PSR B1259-63/LS2883	V	V	V	X	\square	
LS 5039	V	×	V	V	≧	.3.
LS I +61+303	V	×	V	V	ŝ	
HESS J0632+057	V	×	V	X	tair	
1FGL J1018.6-5856	V	×	V	V -	B	.1
PSR J2032+4127/MT91 213	V	V	V	V	R ?	
LMC P3	V	V	V	v	\bigcup	
Note that 🗸 means YES; X means we don't know						

D.Khangulyan

 $\gamma\text{-}\mathrm{ray}$ emission from binary systems

Hydrodynamics of wind interaction

Hydrodynamics of wind interaction

D.Khangulyan

 $\gamma\text{-}\mathrm{ray}$ emission from binary systems

D.Khangulyan γ -ray emission from binary systems

LS 5039 was observed with Suzaku and NuSTAR

Suzaku			200
17	~		
\checkmark			
A.		/ /	17
		\checkmark	
100			

to detect pulsed emission from compact binary systems

< 🗇

D.Khangulyan

 $\gamma\text{-}\mathrm{ray}$ emission from binary systems

Search for pulsed emission from LS 5039

D.Khangulyan

Search for pulsed emission from LS 5039

300 (b)

It was shown that (Yoneda+, PRL submitted)

- Analysis of the Suzaku data suggests pulsation with P = 8.96s
- Analysis of the NuSTAR data suggests pulsation with P = 9.045s
- The period difference implies NS slowing down $\dot{P} = 3 \times 10^{-10} s s^{-1}$
- This information can shed light on the nature of LS 5039
 - The compact object is a neutron star
 - The compact object is magnetar
 - Magnetic field decays very quickly in this source

Suzaku (10-30 keV

NuSTAR (10-30 keV

d (s)

Magnetar in LS 5039

One needs at least 10^{36} erg s⁻¹ to explain the emission from the source

1. Spin-down Luminosity

$$L_{\rm LD} = \frac{(2\pi)^2 I \dot{P}}{P^3} \sim 10^{34} \ {\rm erg \ s^{-1}}$$

- 2. Accreting Pulsar
 - · Pulse period is increasing
 - No fast time variability like accreting object

3. Stellar Wind

$$L_{\rm w} \sim \frac{1}{2} \dot{M}_{\rm w} v_{\rm w}^2 \times \frac{\pi R_{\rm A}^2}{4\pi D_{\rm sep}^2} < 6 \times 10^{31} \text{ erg s}^{-1}$$

4. Decay of strong magnetic field

$$L_{\rm BF} = \frac{B_{\rm NS}^2 R_{\rm NS}^3}{6\tau} \sim 10^{37} \times \left(\frac{B_{\rm NS}}{10^{15} \,\rm G}\right)^2 \left(\frac{R_{\rm NS}}{10 \,\rm km}\right)^3 \left(\frac{\tau}{500 \,\rm yr}\right)^{-1} \,\rm erg \,\, s^{-1}$$

Magnetar in LS 5039

One needs at 1. Spin-	 This suggests interesting implications: ✓ nature of the compact object in the archetypal gamma-ray binary system (in all?) 	m the <mark>s</mark> c	ource
2. Accre • Pu • No	 the first magnetar in binary system (very important for scenarios of magnetar formation) 		
3. Stella	 enable us to constrain the mass of the magnetar by solving the orbit (EOS) 		
4. Decay	 acceleration of particles by the de- cay of the super-strong magnetic field 	$^{-1}$ erg s ⁻¹	
H. PSR B125	 possible connection to other ex- treme astrophysical phenomena 		

イロト イロト イミト イヨト

ъ

Binary Pulsar System PSR B1259-63/LS2883

GeV Lightcurve

Fermi/LAT detected a bright flare with total duration of approx 1 month. Flare had a very sharp rise and the peaking luminosity exceeding L_{SD}

GeV Lightcurve

PWN: Are multi component acceleration is required?

D.Khangulyan

 γ -ray emission from binary systems

< A

ъ

PWN: Are multi component acceleration is required?

post-Fermi/LAT SED of the Crab Nebula

D.Khangulyan

Crab Flares

D.Khangulyan

Crab Flares

D.Khangulyan

 γ -ray emission from binary systems

• • • • • • • • • •

Crab Flares

D.Khangulyan

PWN: Are multi component acceleration is required?

The broadband emission is produced in a weak magnetic field, $B \simeq 125 \,\mu\text{G}$, and the flare is produced by strong magnetic field $B > 1 \,\text{mG}$.

D.Khangulyan

PWN: Are multi component acceleration is required?

The broadband emission is produced in a weak magnetic field, $B \simeq 125 \,\mu\text{G}$, and the flare is produced by strong magnetic field $B > 1 \,\text{mG}$.

D.Khangulyan

Multi-Component model

D.Khangulyan γ -ray emission from binary systems

イロン イロン イヨン イヨン

э

Multi-Component model

- Non-smooth transition @1MeV (Aharonian&Atoyan 1998)
- Gamma-ray data constrain electrons emitting below 1MeV
- Future observations in the MeV band (ASTROGAM, GRAMS) should define the spectral shape
- Observation with LHAASO (in operation now), should constrain the magnetic field responsible for production of multi-MeV synchrotron photons

ヘロア 人間 アメヨア 人口 ア

э

Multi-Component model

- Non-smooth transition @1MeV (Aharonian&Atoyan 1998)
- Gamma-ray data constrain electrons emitting below 1MeV
- Future observations in the MeV band (ASTROGAM, GRAMS) should define the spectral shape
- Observation with LHAASO (in operation now), should constrain the magnetic field responsible for production of multi-MeV synchrotron photons

It cannot be excluded a priory that multi-MeV photons are produced in environments with stronger magnetic field. Future observations in the MeV and UHE bands should shed light on the conditions at the MeV emitter in the crab nebula.

Summary

- Gamma-ray emitting binaries represent a small, but very diverse group of gamma-ray sources
- The majority of them have apparently the same nature (based on 5 criteria)
- These objects might be efficient multi-TeV particle accelerator, so LHAASO should be able to see a few of them and to constrain the acceleration process efficiency
- Detailed analysis of the Suzaku and NuSTAR data enabled one to find pulsations in the hard X-ray spectrum of LS 5039
- Pulse period and its time derivative constrains the nature of the brightest component in LS 5039: it must be due to the dissipation of the magnetar magnetic field
- Multi-component particle acceleration seen in gamma-ray binaries might be also operating in the Crab Nebula
- Observations with LHAASO (and also in MeV band) will bring a lot of new information, even in the case of the Crab Nebula (a very well studied source)