
Status of the CEPCSW Prototype

Jiaheng Zou

On behalf of CEPCSW working group

2019.11.01

The Goal of CEPCSW Prototype

 Based on CSS (Common Software Stack)

 Reuse existing components

 DD4hep, Gaudi, ROOT …

 Implement the specific components for CEPC

 Provide a ready-to-work environment to algorithm
developers and physicists

 Migrate marlin algorithms to CEPCSW

 Integrate more algorithms and features

 Move from marlin to the new software system

2

Common Software Stack (CSS)

A common solution for future collider experiments: iLC, FCC, CEPC

3

Tasks

 Event Data Model

 Simulation

 Application layer modules (Reconstruction)

 Integration and testing

4

Event Data Model : EDM4hep

 The EDM4hep project is being constructed in the
context of CSS

 Based on PODIO, or plain-old-data I/O
 A code generator – generate classes from yaml files

 Avoid deep-object hierarchies and virtual inheritance

 Improve runtime performance

 Simplify the implementation of data reading/writing

 Common core classes described in a yaml file

 Each experiment can implement their own extensions

 A project followed by HEP Software Foundation
 Regular meeting in every 2 weeks (CERN, DESY, IHEP …)

 https://github.com/HSF/EDM4hep

 But, it is not ready yet : (

5

https://github.com/HSF/EDM4hep

Current EDM in CEPCSW Prototype

6

 CEPCSW will use PLCIO before EDM4hep is ready

 PLCIO is an implementation of the LCIO event data model in PODIO

 Possibly EDM4hep will be inherited from PLCIO

 The migration from PLCIO to EDM4hep should be easy

 We are the first user of PLCIO

 Some missing classes – implement by ourselves

 Potential problems, such as memory leak – need more debugging

PODIO

EDM4hep

PLCIO

LCIO

Code generator

• EDM in Marlin

• Current EDM in CEPCSW

• Similar interfaces with LCIO

• The candidate of EDM4hep

• EDM in the future

?

Read the Existing LCIO Data

 LCIODataSvc

 Read LCIO files via the LCIO library

 Convert LCIO data objects to PLCIO data objects

 Register PLCIO data objects to Gaudi Event Data Store

 Current Status

 Data converters for DST data types

 Some of the data relations are not recovered properly yet

7

LCIO Data

Gaudi EDS

PLCIO

data object

in

memory

LCIODataSvc

LCIO Library

converterconverterconverter

Gaudi Algorithm
Gaudi Algorithm

Gaudi Algorithm

Tasks

 Event Data Model

 Simulation

 Application layer modules (Reconstruction)

 Integration and testing

8

Status of Simulation Framework (I)

 Integration with Gaudi & DD4hep is
done

 Geometry:
 CEPC_v4 (DD4hep version) from Chengdong

 Silicon Detector is enabled

 The main processing procedure of the
simulation framework

StdHep
Files

WHIZARD
Generator

DetSimSvcGenAlg

MCParticle

DetSimAlg
Primary

Generator
Action

Data flow

Invoke

Run
Manager

Detector
Construction

GeoSvcPhysics List

Run
Action

Event
Action

Tracking
Action

Stepping
Action

DD4hep

User Actions

SimTrackerHit

SimCalorimeterHit

DD4hep

GeoSvc

Simulation Reconstruction

9

Status of Simulation Framework (II)

 Execution test

 Input: StdHep and LCIO formats

 Output: plcio, converting from the DDG4 Hit objects (Tracker/Calorimeter)

 Next Steps

 integrate with digitization algorithm

 validation with existing MC samples
10

Tasks

 Event Data Model

 Simulation

 Application layer modules (Reconstruction)

 Integration and testing

11

SiliconTracking Migration

 Pixel: SimTrackerHit  TrackerHit  SiliconTracking

 Strip: SimTrackerHit  TrackerHit  SpacePoint  SiliconTracking

 Tracking processes:

 SiliconTracking_MarlinTrk 

 

 TrackSubsetProcessor FullLDCTracking_MarlinTrk

 

 ForwardTracking 

 ClupatraProcessor 

 Package dependencies  module package (by module classes)

 MarlinTrk

 KalDet

 KalTest

 Data model dependencies, LCIO to plcio
 EVENT::TrackerHit  plcio::TrackerHit
 EVENT::TrackerHitPlane  plcio::TrackerHitPlane

12

Progress

package Component of

CEPCSW

Type status

MarlinTrk TrackSystemSvc service Compile & link

KalDet KalDet Independent Compile & link

KalTest KalTest Independent Compile & link

SpacePointBuilder SpacePointAlg Algorithm ongoing

SiliconTracking_M

arlinTrk

SiliconTrackingAlg Algorithm ongoing

ForwardTracking ? ? ?

TrackSubsetProce

ssor

? ? ?

 After implementing module packages, similar usage for fitting
13

Issues and Solutions (Temporary)

 Can not get relative object directly in plcio data model

 Remove relative object usage in tracking and after fitting,
influence some following analysis based on MC truth particles

 We are going to extend plcio with a service to handle the
object relations

 Can not convert pointers of data objects each other

 Fix data type in algorithm and use template in codes of
module classes

 Geometry service during the transition from Marlin to Gaudi

 Use the GEAR package in Marlin at present

 Will be replaced by the new service with DD4hep

14

Tasks

 Event Data Model

 Simulation

 Application layer modules (Reconstruction)

 Integration and testing

15

Software Infrastructure and Building

 Common tools

 CMake: Build & deployment

 Gaudi cmake macros

 Git: version control
 http://cepcgit.ihep.ac.cn/cepc-

prototype

 CVMFS: software distribution

 CEPC specific:
/cvmfs/cepcsw.ihep.ac.cn/prototype

 Software building

 Based on LCG software stack now

 Move to KEY4hep in the context
of CSS in the future

CEPCSW

Generator

Simulation

Gaudi Framework

Core Software layer

Reconstruction

ROOT Geant4

LCIO PODIO

DD4hep

gcc python cmake

Event

External Libraries & Tools

pLCIO

16

http://cepcgit.ihep.ac.cn/cepc-prototype

A Preliminary Testing

 A digitization algorithm migrated from Marlin

 Geometry: GearSvc migrated from Marlin

 Data and I/O

 Read .slcio (LCIO) format files with LCIODataSvc

 Write .podio (PLCIO) format files with PodioDataSvc

 Compare the results with Marlin

17

Physics Results

 The results of CEPCSW and Marlin are exactly the same

18

Execution Performance

 Execution time

 CEPCSW – 124 min VS. Marlin – 131 min

 Memory usage of CEPCSW

19

Physical memoryVirtual memory

?

Summary

 The CEPCSW prototype begins to take shape

 EDM, I/O and common services

 Simulation framework and DD4hep integration

 Reconstruction algorithms

 A reasonable testing result

 Have joined the international collaboration on Common Software
Stack for future HEP experiments

 EDM4hep, KEY4hep …

 Plans

 Release a first workable demo before the Nov. workshop

 Migrate more algorithms from Marlin

 High performance computing development

20

