

Search for new physics with accelerator neutrino oscillations

TseChun Wang (SYSU) wangzejun@mail.sysu.edu.cn

ĺ

The messages want to be conveyed today

- beyond the standard model (BSM) by far.
- oscillations.
- phenomenology.
- 4. To achieve the above, we need accelerator neutrino facilities.

1. Neutrino oscillations are the only evidence for the physics

2. Neutrino physicists want to know more about neutrino

3. Particle physicists want to know if there is any other BSM

Neutrinos in the standard model

Its existence was proposed by Pauli in 1930, and was confirmed in 1956.

They are predicted to be
 1. massless
 2. only weak interactions
 3. three flavours- electron neuroneurons.

3. three flavours- electron neutrinos, muon neutrinos, and talon

Current understanding on neutrino oscillations

neutrino mass-square differences

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \delta_{\alpha\beta} - 4 \sum_{k>j} \Re \left[\begin{bmatrix} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \end{bmatrix} \sin^{2} \left(\frac{\Delta m_{kj}^{2} L}{4E} \right) \\ + 2 \sum_{k>j} \Re \left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \end{bmatrix} \sin \left(\frac{\Delta m_{kj}^{2} L}{2E} \right) \right].$$

$$Incutrino mixing$$

$$w_{\alpha} = \cos \theta_{\alpha} \sin \theta_{\alpha}$$

DUNE
$$\nu_{\mu} \rightarrow \nu_{e}$$

T2HK $\nu_{\mu} \rightarrow \nu_{e}$

Appearance v mode

Appearance \overline{v} mode

Oscillation parameters vs. neutrino oscillations

neutrino oscillation parameters

neutrino oscillation spectra

predict

Current, future, and proposed neutrino Oscillation Experiments

Far Detector

 $\sin\theta_{13}$ $\sin \theta_{23}$ $\sin\delta$

 $\sin\theta_{23}$ $\sin \delta$ Δm_{31}^2

NOvA

 $\sin\theta_{13}$ Δm_{31}^2

Daya bay

JUNO

Yangjiang NP

6

P20

Current, future, and proposed neutrino Oscillation Experiments Accelerator Neutrino Projects

ming

00

Far Detector

 $\frac{\sin \theta_{13}}{|\Delta m_{31}^2|}$

Current understanding on neutrino oscillations

U =

$$\begin{split} P_{\nu_{\alpha} \to \nu_{\beta}}(L,E) &= \delta_{\alpha\beta} - 4 \sum_{k>j} \Re \mathfrak{e} \big[U_{\alpha k}^* \, U_{\beta k} \, U_{\alpha j} \, U_{\beta j}^* \big] \, \sin^2 \left(\frac{\Delta m_{kj}^2 L}{4E} \right) \\ &+ 2 \sum_{k>j} \Im \mathfrak{m} \big[U_{\alpha k}^* \, U_{\beta k} \, U_{\alpha j} \, U_{\beta j}^* \big] \, \sin \left(\frac{\Delta m_{kj}^2 L}{2E} \right) \, . \end{split}$$

 $\delta_{\mathrm{CP}}/2$

 $\theta_{13}/2$

 $\delta_{
m CP}/^{\circ}$

with SK-atm

SK

	Normal Oro	tering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 4.7)$		
	btp $\pm 1\sigma$	3σ range	$btp \pm 1\sigma$	3σ range		
$\sin^2 heta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	0.275 ightarrow 0.350		
$ heta_{12}/^{\circ}$	$33.82\substack{+0.78\\-0.76}$	$31.61 \rightarrow 36.27$	$33.82\substack{+0.78\\-0.76}$	$31.61 \rightarrow 36.27$		
$\sin^2 heta_{23}$	$0.580\substack{+0.017\\-0.021}$	$0.418 \rightarrow 0.627$	$0.584\substack{+0.016\\-0.020}$	0.423 ightarrow 0.629		
$ heta_{23}/^{\circ}$	$49.6\substack{+1.0 \\ -1.2}$	$40.3 \rightarrow 52.4$	$49.8\substack{+1.0 \\ -1.1}$	$40.6 \rightarrow 52.5$		
$\sin^2 heta_{13}$	$0.02241\substack{+0.00065\\-0.00065}$	$0.02045 \to 0.02439$	$0.02264\substack{+0.00066\\-0.00066}$	0.02068 o 0.02463		
$ heta_{13}/^{\circ}$	$8.61\substack{+0.13 \\ -0.13}$	$8.22 \rightarrow 8.99$	$8.65\substack{+0.13 \\ -0.13}$	$8.27 \rightarrow 9.03$		
$\delta_{ m CP}/^{\circ}$	215^{+40}_{-29}	$125 \rightarrow 392$	284^{+27}_{-29}	$196 \rightarrow 360$		
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	6.79 ightarrow 8.01	$7.39\substack{+0.21 \\ -0.20}$	6.79 ightarrow 8.01		
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.525^{+0.033}_{-0.032}$	$+2.427 \rightarrow +2.625$	$-2.512\substack{+0.034\\-0.032}$	$-2.611 \rightarrow -2.412$		
	Normal Ord	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 9.3)$		
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
$\sin^2 heta_{12}$	$0.310\substack{+0.013\\-0.012}$	0.275 ightarrow 0.350	$0.310\substack{+0.013\\-0.012}$	0.275 ightarrow 0.350		
$ heta_{12}/^{\circ}$	$33.82\substack{+0.78 \\ -0.76}$	$31.61 \rightarrow 36.27$	$33.82\substack{+0.78 \\ -0.75}$	$31.62 \rightarrow 36.27$		
$\sin^2 heta_{23}$	$0.582\substack{+0.015\\-0.019}$	$0.428 \rightarrow 0.624$	$0.582\substack{+0.015\\-0.018}$	0.433 ightarrow 0.623		
$ heta_{23}/^{\circ}$	$49.7\substack{+0.9 \\ -1.1}$	$40.9 \rightarrow 52.2$	$49.7^{+0.9}_{-1.0}$	$41.2 \rightarrow 52.1$		
$\sin^2 heta_{13}$	$0.02240\substack{+0.00065\\-0.00066}$	$0.02044 \rightarrow 0.02437$	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \rightarrow 0.02461$		
$ heta_{13}/^{\circ}$	$8.61\substack{+0.12 \\ -0.13}$	8.22 ightarrow 8.98	$8.65\substack{+0.12 \\ -0.13}$	$8.27 \rightarrow 9.03$		
$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$		
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	6.79 ightarrow 8.01	$7.39\substack{+0.21 \\ -0.20}$	6.79 ightarrow 8.01		
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512\substack{+0.034\\-0.031}$	$-2.606 \rightarrow -2.413$		

Rest of unknowns if sign(Δm_{31}^2) > or < 0 ? if $\theta_{23} > \text{or} < 45^{\circ}$ if $\delta = \pm \pi/2$ $\delta =$

Current understanding on neutrino oscillations

$$P_{
u_{lpha} o
u_{eta}}(L,E) = \delta_{lphaeta} - 4 \sum_{k>j} \Re e \left[U_{lpha k}^* U_{eta k} U_{lpha j} U_{eta j}^*
ight] \sin^2 \left(rac{\Delta m_{kj}^2 L}{4E}
ight) + 2 \sum_{k>j} \Im m \left[U_{lpha k}^* U_{eta k} U_{lpha j} U_{eta j}^*
ight] \sin \left(rac{\Delta m_{kj}^2 L}{2E}
ight).$$

We want to resolve it by measuring the appearance $P(\nu_{\mu} \rightarrow \nu_{e})$, which needs the accelerator channel neutrino facilities, because of the neutrino flavour and the high neutrino energy.

Rest of unknowns if sign(Δm_{31}^2) > or < 0 ?

if $\theta_{23} > \text{or} < 45^{\circ}$?

$$f \delta = \pm \pi/2$$

The messages want to be conveyed today

1. Neutrino oscillations are the only evidence for the physics beyond the standard model (BSM) by far.

phenomenology.

4. To achieve the above, we need accelerator neutrino facilities.

2. Neutrino physicists want to know more about neutrino **OSCILLATIONS.** if sign (Δm_{31}^2) > or < 0? if θ_{23} > or < 45°? if $\delta = \pm \pi/2$? $\delta =$ 3. Particle physicists want to know if there is any other BSM

We measure $P(\nu_{\mu} \rightarrow \nu_{e})$ to resolve some of these problems.

The messages want to be conveyed today

1. Neutrino oscillations are the only evidence for the physics beyond the standard model (BSM) by far.

3. Particle physicists want to know if there is any other BSM phenomenology.

4. To achieve the above, we need accelerator neutrino facilities.

2. Neutrino physicists want to know more about neutrino We measure $P(\nu_{\mu} \rightarrow \nu_{e})$ to resolve some of these **OSCILLATIONS.** if sign (Δm_{31}^2) > or < 0? if θ_{23} > or < 45°? problems. **HOW?** if $\delta = \pm \pi/2$? $\delta =$

Mass ordering and Octant degeneracies vs. DUNE and T2HK

Current global fit

DUNE and T2HK

arXiv:1612.07275

- High sensitivity for mass ordering and octant degeneracies Is expected.
- Mass Ordering and octant degeneracies can be resolved after DUNE and T2HK.

DUNE: 5+5 yr T2HK: 2.5+7.5 yr

CP violation vs. DUNE and T2HK

$$\Delta \chi^2_{CP} = \min_{\delta \in \{0,\pi\}} \Delta \chi^2(\delta),$$

How good we can exclude the CP conserved scenarios.

arXiv:1612.07275

DUNE: 5+5 yr T2HK: 2.5+7.5 yr

The precision of CP phase with DUNE and T2HK

DUNE: 5+5 yr T2HK: 2.5+7.5 yr

arXiv:1612.07275

For $\delta = \pm \frac{\pi}{2}$, DUNE is better. For $\delta = \pm \pi$, T2HK is better. The synergy can reach the precision < 13°.

CP phase measurement in MOMENT

arXiv:1909.01548

	0°	90°	180°	270°
S				
	8.6°	17.3°	9.0°	15.9°
	5.4°	9.1°	5.7°	8.2°
	8.1°	17.2°	8.5°	15.8°
	15.3°	17.9°	18.3°	16.3°
7				
	8.6°	17.3°	9.0°	15.9°
	10.4°	17.0°	11.1°	13.2°
num				
	14.8°	23.1°	13.9°	22.7°
	8.6°	17.3°	9.0°	15.9°

- MOMENT is compatible to T2HK in the delta measurement.
- Systematics is an advantage for MOEMENT for CP conserved values.
- Statistical uncertainty is important for CPV values.

The messages want to be conveyed today

1. Neutrino oscillations are the only evidence for the physics beyond the standard model (BSM) by far.

2. Neutrino physicists want to know more about neutrino

phenomenology.

4. To achieve the above, we need accelerator neutrino facilities.

OSCILLATIONS. if sign (Δm_{31}^2) > or < 0? if θ_{23} > or < 45°? if $\delta = \pm \pi/2$? $\delta =$ 3. Particle physicists want to know if there is any other BSM

We measure $P(\nu_{\mu} \rightarrow \nu_{e})$ to resolve some of these problems.

Precision measurements offer an opportunity for searching for the new BSM physics.

Neutrino physics in neutrino oscillations

Flavour symmetry: high-energy symmetries

□ Nonstandard interactions: new mediators

Nonunitarity, neutrino decays, and sterile-active mixing: new fermions

Neutrino physics in neutrino oscillations

Flavour symmetry: high-energy symmetries

Nonstandard interactions: new mediators

 Nonunitarity.

new fermions

cays, and sterile-active mixing:

Motivation of flavour symmetry

Observe the pattern of neutrino mixing

flavour physics in neutrino oscillations

Tri-direct littlest seesaw

- Two sterile neutrinos: for atmospheric and solar masses.
- Normal mass ordering and m₁=0 are predicted.
- 6 oscillation parameters -> 4 model parameters.
- Explain current neutrino mixing and mass.

$$m_{\nu} = m_{a} \begin{pmatrix} 1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega \end{pmatrix} + e^{i\eta} m_{s}$$
$$e^{i2\pi/3}$$
$$r \equiv m_{s}/m_{s}$$

						JUN
	$\Delta \chi^2$	x	η/π	r	$m_a/~{ m meV}$	$ heta_{12}$
	~ 6.98	~ -3.65	~ 1.13	~ 0.511	~ 3.71	~ 35
3σ al	lowed	range:	-	-5.475	< x < -3	3.37,
			0.	204 < 7	r < 0.606	, 3.3

arXiv:1807.07538, arXiv:1811.12340.

Testing flavour symmetry models with MOMENT

arXiv:1907.01371

- The degeneracy is seen.
- Can exclude this model >5 sigma. Good θ_{23} and δ measurements are useful to confirm the sum rule, and need accelerator neutrino facilities.

Neutrino physics in neutrino oscillations

□ Nonstandard interactions: new mediators

I Nonunitarity and neutrino decays: new fermions

Nonstandard Interactions

□ The interactions involve at-least one neutrinos and SM fermions via a BSM mediator, eg. Z'...

□ It may take place at the source, at the detector, and in matter of neutrino oscillations.

 $q + l \rightarrow q' + \nu; \ l \rightarrow l' + \nu + \nu'$

source

 $q + \nu \rightarrow q' + l; \ l + \nu \rightarrow l' + \nu'$

detector

 $q + \nu \rightarrow q + \nu'; l + \nu \rightarrow l + \nu'$ matter 25

NSIs in matter

Standard matter effects

$$= \frac{1}{2E} \left\{ U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + A \begin{pmatrix} \epsilon_{ee}^{m} & \epsilon_{e\mu}^{m} & \epsilon_{e\tau}^{m} \\ \epsilon_{\mu e}^{m} & \epsilon_{\mu\mu}^{m} & \epsilon_{\mu\tau}^{m} \\ \epsilon_{\tau e}^{m} & \epsilon_{\tau\mu}^{m} & \epsilon_{\tau\tau}^{m} \end{pmatrix} \right\}$$

Oscillation in vacuum

NSIs in matter

 $\epsilon_{\alpha\beta}$: the ratio between the strength of NSIs to the Fermi constant. A : matter potential.

We need accelerator neutrino facilities for at least two reasons: 1) the higher intensity; 2) the higher energy

New particles in neutrino oscillations

27

neutrino oscillation parameters

Last understanding of NSIs in matter

x 3 is about the NSIs in matter

	OSC	95 % C.L.
	LMA	$LMA \oplus LMA-D$
$ \begin{array}{c} \varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu} \\ \varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu} \end{array} \end{array} $	[-0.020, +0.456] [-0.005, +0.130]	$\oplus [-1.192, -0.802]$ [-0.152, +0.130]
$arepsilon^u_{e\mu} \ arepsilon^u_{e au} \ arepsilon^u_{e au} \ arepsilon^u_{\mu au}$	[-0.060, +0.049] [-0.292, +0.119] [-0.013, +0.010]	$egin{array}{c} [-0.060,+0.067] \ [-0.292,+0.336] \ [-0.013,+0.014] \end{array}$
$arepsilon_{ee}^d - arepsilon_{\mu\mu}^d \ arepsilon_{ au au}^d - arepsilon_{\mu\mu}^d$	[-0.027, +0.474] [-0.005, +0.095]	$\oplus [-1.232, -1.111]$ [-0.013, +0.095]
$egin{aligned} arepsilon^d_{e\mu} \ arepsilon^d_{e au} \ arepsilon^d_{e au} \ arepsilon^d_{\mu au} \end{aligned}$	[-0.061, +0.049] [-0.247, +0.119] [-0.012, +0.009]	$egin{array}{l} [-0.061, +0.073] \ [-0.247, +0.119] \ [-0.012, +0.009] \end{array}$
$ \begin{array}{c} \varepsilon_{ee}^p - \varepsilon_{\mu\mu}^p \\ \varepsilon_{\tau\tau}^p - \varepsilon_{\mu\mu}^p \end{array} \end{array} $	[-0.041, +1.312] [-0.015, +0.426]	$\oplus [-3.327, -1.958]$ [-0.424, +0.426]
$ec{arepsilon_{e\mu}^p} \ arepsilon_{e au}^p \ arepsilon_{e au}^p \ arepsilon_{e au}^p \ arepsilon_{\mu au}^p$	[-0.178, +0.147] [-0.954, +0.356] [-0.035, +0.027]	$egin{array}{llllllllllllllllllllllllllllllllllll$

arXiv:1805.04530 arXiv:1905.05203

1σ/2σ/3σ

- NSI parameters are not be constrained very well by oscillation data.
- These new parameters affect the measurement of octant, mass ordering and CPV.

CERN-PINGU configuration (planet-scale nu oscillations)

Shooting a neutrino beam from CERN to PINGU baseline~10000km; large matter effects

arXiv:1909.12674

$1\sigma/90\%/95\%C.L.$

- Good measurements are expected.
- Most of degeneracies are resolved.
- It can be used for searching for CPV in NSIs.

Neutrino physics in neutrino oscillations

E Flavour symmetry: high-energy symmetries

new fermions

Nonstandard interactions: new mediators

Nonunitarity, neutrino decays, and sterile-active mixing:

3-neutrino unitarity

	U	J ^{3x3} PMNS	_		
	(U_{e1})	U_{e2}	U_{e3}		U
	$U_{\mu 1}$	$U_{\mu 2}$	$U_{\mu 3}$	•••	U
$_{\rm PMNS}^{\rm Extended} =$	$U_{\tau 1}$	$U_{\tau 2}$	$U_{\tau 3}$		U
1 101100	:	÷	÷	••.	
	$U_{s_n 1}$	U_{s_n2}	U_{s_n3}		U_{s}

Experiment type	ent type Experiment		Leading Order Function	Unitary Condit			
Short baseline reactor experiments (ve->ve)	Daya Bay; RENO; Double Chooz	~10²-10³ eV²² (Δm² ₃₁)	$2 U_{e3} ^{2}(U_{e1} ^{2}+ U_{e2} ^{2})$	1 st row normalisation			
Long baseline reactor experiments (⊽ _e ->⊽ _e)	KamLAND	~10 ⁴ eV ⁻² (Δm² ₂₁)	2 U _{e1} ² U _{e2} ²	1 st row normalisation			
Solar neutrino experiments (v _e ->v _e)	SNO	N/A (diurnal distance v.s. ~10 MeV)	U _{e2} ² (U _{e1} ² + U _{e2} ²) + U _{e3} ²	1 st row normalisation			
Accelerator experiments $(v_{\mu} \rightarrow v_{\mu})$	T2K; NOvA; MINOS	~10²-10³ eV² (Δm² ₃₁)	$2 U_{\mu 3} ^{2}(U_{\mu 1} ^{2}+ U_{\mu 2} ^{2})$	2 st row normalisation			
Accelerator experiments $(v_{\mu} - > v_{e})$	T2K; NOvA	~10²-10³ eV²² (Δm² ₃₁)	2Re[U _{e3} [*] U _{µ2} (U _{e1} [†] U _{µ1} +U _{e2} U _{µ2}]	1 st &2 nd row orthgonality			
Accelerator experiments $(v_{\mu} - > v_{\tau})$	OPERAR	~10 ³ eV ⁻² (∆m² ₃₁)	$2\text{Re}[\text{U}_{\tau3}^{*}\text{U}_{\mu3}^{}(\text{U}_{\tau1}^{*}\text{U}_{\mu1}^{} + \text{U}_{\tau2}^{*}\text{U}_{\mu2}^{})]$	3 rd &2 nd row orthgonality			
Only 5 events by far							

We have good measurement for the "e" row. For "mu" and "tau" rows, we need accelerator facilities.

Invisible neutrino decays in MOMENT

$$H = U \left\{ \frac{1}{2E} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} - i \frac{m_3}{2E\tau_3} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\} U^{\dagger} + \begin{pmatrix} 2\sqrt{2}G_{10} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$$

arXiv:1811.05623

New strategy for flavour symmetry

Testing A4 symmetry at high energy for DUN

where $\chi^2|_{\alpha_{2n}=\alpha_{3n}=0}$ is the χ^2 value with the assumption that $\alpha_{2n} = \alpha_{3n} = 0$ (n = 1, 2, 3), and $\chi^2_{b.f.}$ is the χ^2 value for the best fit. The expression for χ^2 is

arXiv:1801.05656

- High precision to test A4 at NSIs are expected.
- A4 conserved at NSI can explain null-NSI measurement in DUNE.

A4 symmetry forbids the flavour-transition NSIs.

$$\Delta \chi^2_{A_4} \equiv \chi^2 |_{\alpha_{2n} = \alpha_{3n} = 0} - \chi^2_{\text{b.f.}}, \qquad (64)$$

$$\chi^{2} = \min_{\Theta, \xi = \{\xi_{s}, \xi_{b}\}} \left[2 \sum_{i} \left(\eta_{i}(\Theta, \xi) - n_{i} + n_{i} \ln \frac{n_{i}}{\eta_{i}(\Theta, \xi)} \right) + p(\xi, \sigma) + P(\Theta_{\text{OSC}}) \right].$$
(65)

Parameter								
d.o.f.	α_{21}	α_{22}	α_{23}					
6	4.8 <i>σ</i> –5.7 <i>σ</i>	$4.8\sigma - 5.5\sigma$	7.8 <i>o</i> –10.2 <i>o</i>					
12	3.7 <i>o</i> -4.6 <i>o</i>	3.7σ – 4.4σ	6.9 <i>o</i> –9.4 <i>o</i>					

The messages want to be conveyed today

1. Neutrino oscillations are the only evidence for the physics beyond the standard model (BSM) by far.

Verticity
 2. Neutrino physicists want to know more about neutrino we oscillations. if sign(Δm²₃₁) > or < 0? if θ₂₃ > or < 45°?
 if δ = ± π/2? δ = ?
 3. Particle physicists want to know if there is any other BSM

3. Particle physicists want to phenomenology.

Flavour symmetry/ New mediator searching/ New fermion probing 4. To achieve the above, we need accelerator neutrino

To achieve the above, we facilities.

We measure $P(\nu_{\mu} \rightarrow \nu_{e})$ to resolve some of these problems.

Conclusions

The messages want to be conveyed today

- beyond the standard model (BSM) by far.
- oscillations.
- phenomenology.
- 4. To achieve the above, we need accelerator neutrino facilities.

1. Neutrino oscillations are the only evidence for the physics

2. Neutrino physicists want to know more about neutrino

3. Particle physicists want to know if there is any other BSM

Thank you for your attention

PostDoc advertisement in SYSU

R&D of a muon tracking detector

探测器prototype

Postdoc openings in our group: ~2K euros/month + bonus + on-campus housing + **Postdoc funding** supported by local province.

Email: tangjian5@mail.sysu.edu.cn

2019/07/28

Jian Tang

Back-up

The Standard Model

Standard Model of Elementary Particles

 $su(2)_L \times u(1)_Y$ gauge interactions $\mathscr{L} = i \quad \sum \quad \overline{L'_{\alpha L}} \not\!\!\!D L'_{\alpha L} + i \quad \sum \quad \overline{Q'_{\alpha L}} \not\!\!\!D Q'_{\alpha L}$ $\alpha = 1,2,3$ $\alpha = e, \mu, \tau$ $+ i \sum \overline{\ell'_{\alpha R}} \mathcal{D} \ell'_{\alpha R} + i \sum \overline{q'^D_{\alpha R}} \mathcal{D} q'^D_{\alpha R} + i \sum \overline{q'^U_{\alpha R}} \mathcal{D} q'^U_{\alpha R}$ $\alpha = d, s, b$ $\alpha = u, c, t$ $\alpha = e, \mu, \tau$ $-\frac{1}{4}\underline{A}_{\mu\nu}\underline{A}^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$ self-interaction + $(D_{\rho}\Phi)^{\dagger}(D^{\rho}\Phi) - \mu^2 \Phi^{\dagger}\Phi - \lambda (\Phi^{\dagger}\Phi)^2$ Higgs potential $\sum \left(Y_{\alpha\beta}^{\prime\ell} \, \overline{L_{\alpha L}^{\prime}} \, \Phi \, \ell_{\beta R}^{\prime} + Y_{\alpha\beta}^{\prime\ell*} \, \overline{\ell_{\beta R}^{\prime}} \, \Phi^{\dagger} \, L_{\alpha L}^{\prime} \right)$ $_{lpha,eta=e,\mu, au}$ $-\sum \left(Y_{\alpha\beta}^{\prime D}\,\overline{Q_{\alpha L}^{\prime}}\,\Phi\,q_{\beta R}^{\prime D}+Y_{\alpha\beta}^{\prime D*}\,\overline{q_{\beta R}^{\prime D}}\,\Phi^{\dagger}\,Q_{\alpha L}^{\prime}\right)$ $\alpha = 1,2,3 \beta = d,s,b$ $\sum \quad \left(Y_{\alpha\beta}^{\prime U} \,\overline{Q_{\alpha L}^{\prime}} \,\widetilde{\Phi} \, q_{\beta R}^{\prime U} + Y_{\alpha\beta}^{\prime U*} \,\overline{q_{\beta R}^{\prime U}} \,\widetilde{\Phi}^{\dagger} \, Q_{\alpha L}^{\prime} \right)$ $\alpha = 1, 2, 3 \beta = u, c, t$ mass term of fermions

BEYOND The standard model of particle physics

□ The neutrino oscillation: neutrinos are massive!

□ The dark matter: dark sector is predicted!

□ The dark energy: it is inconsistent with Higgs vacuum!

BEHIND neutrino oscillations

Neutrino oscillations are the effects caused by the neutrino mass differences and neutrino mixing.

The neutrino oscillation: neutrinos have mass.
 Time dilation does not apply. Otherwise, any variation of neutrino would not be allowed.

□ Neutrino mixing is allowed in SM.

Neutrino Oscillation Experiments

Liquid Argon/Iron detector

Water/Ice/LS Cherenkov detector

....

Appearance channel

Disappearance channel

Upcoming LBL accelerator Experiments

Deep Underground Neutrino Experiment (DUNE): 1.1300 km 2.40 kton LArTPC **3.** non-negligible matter effects **4.** Superbeam facility

Tokai to Hyper-Kamiokanda(T2HK): 1.295 km 2. 500 kton Water Cherenkov detector **3. almost no matter effects 4.** Superbeam facility

 $\begin{array}{ccc}
\nu_{\mu} \to \nu_{\mu} / \nu_{e} \\
\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} / \bar{\nu}_{e}
\end{array}$

Experiments	MOMENT
Fiducial mass	Gd-doping Water cherenkov(500
Channels	$ \nu_e(\bar{\nu}_e) \to \nu_e(\bar{\nu}_e), \nu_\mu(\bar{\nu}_\mu) \to \nu_\mu(\bar{\nu}_\mu)$
	$ \nu_e(\bar{\nu}_e) \to \nu_\mu(\bar{\nu}_\mu), \nu_\mu(\bar{\nu}_\mu) \to \nu_e(\bar{\nu}_\mu) $
Energy resolution	12%/E
Runtime	μ^- mode 5 yrs+ μ^+ mode 5 yr
Baseline	$150 \mathrm{~km}$
Energy range	$100~{\rm MeV}$ to $800~{\rm MeV}$
Normalization	appearance channels: 2.5%
(error on signal)	disappearance channels: 5%
Normalization	Neutral current, Atmospheric neut
(error on background)	Charge misidentification

MOMENT

arXiv:1401.8125

$$\mu^{-} \rightarrow e^{-} + \nu_{\mu} + \bar{\nu}_{e}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \bar{\nu}_{e} + \bar{\nu}_{\mu}$$

$$\mu^{+} \rightarrow e^{+} - \bar{\nu}_{\mu}$$

$$\mu^{+} - \bar{\nu}_{\mu}$$

$$\mu^{+} - \bar{\nu}_{\mu}$$

$$\mu^{+} - \bar{\nu}_{\mu}$$

$$\mu^{+} - \bar{\nu}$$

Precision measurement of the CP phase

$$P(\nu_{\mu} \rightarrow \nu_{e}; E, L) = P_{1} + I$$

$$P_{1} = \frac{4}{(1 - r_{A})^{2}} \sin^{2} \theta_{23} \sin^{2} \theta_{23}$$

 $J_r = \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \sin \theta_{13}$ $r_A = 2\sqrt{2}G_F N_e E / \Delta m_{31}^2; \quad \Delta = \Delta m_{31}^2 / 2$

Oscillation for DUNE and T2HK with different CP phases

Normal ordering

Oscillation for DUNE and T2HK with different CP phases

Oscillation for DUNE and T2HK with different CP phases

Mass ordering

Matter effects resolve the degeneracy

The degeneracy between delta and MO arXiv:1612.07275

DUNE: 5+5 yr T2HK: 2.5+7.5 yr

- High sensitivity is predicted.
- The degeneracy in T2HK can be resolved by including DUNE data.

CSD Littlest Seesaw

- Two sterile neutrinos: for atmospheric and solar masses.
- Normal mass ordering and m₁=0 are predicted.
- 6 oscillation parameters -> 3 model parameters.
- Explain current neutrino mixing and mass.

$$\theta_{13} \sim (n-1) \frac{\sqrt{2}}{3} \frac{m_2}{m_3}$$

$$m^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & n & (n-2) \\ n & n^2 & n(n-2) \\ (n-2) & n(n-2) & (n-2)^2 \end{pmatrix}$$

$$m_{\text{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix},$$
$$m_{\text{LSB}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}.$$

 $egin{array}{c} m_a & \ m_b & \ \eta & \ ra \ heta_{12} & \ heta_{13} & \ heta_{23} & \ heta_$

arXiv:1612.01999

	LS	SA	LS	B	NuFIT 3.0
	$\eta~{ m free}$	η fixed	$\eta~{ m free}$	η fixed	global fit
[meV]	27.19	26.74	26.95	26.75	
[meV]	2.654	2.682	2.668	2.684	_
ad]	0.680π	$2\pi/3$	-0.673π	$-2\pi/3$	
[°]	$34.36\substack{+0.03 \\ -0.02}$	$34.33\substack{+0.01 \\ -0.01}$	$34.35\substack{+0.03 \\ -0.03}$	$34.33\substack{+0.03 \\ -0.03}$	$33.72\substack{+0.79 \\ -0.76}$
[°]	$8.46\substack{+0.13 \\ -0.11}$	$8.60\substack{+0.05\\-0.05}$	$8.54\substack{+0.12\\-0.17}$	$8.60\substack{+0.13 \\ -0.11}$	$8.46\substack{+0.14 \\ -0.15}$
[°]	$45.03\substack{+0.44 \\ -0.45}$	$45.71\substack{+0.05 \\ -0.05}$	$44.64\substack{+0.63\\-0.41}$	$44.28\substack{+0.12\\-0.11}$	$41.5^{+1.3}_{-1.1}$
]	$-89.9\substack{+1.9\\-2.0}$	$-86.9\substack{+0.2\\-0.2}$	$-91.6\substack{+2.8\\-1.8}$	$-93.1\substack{+0.5\\-0.5}$	-71^{+38}_{-51}
$v_{21}^2 \ [10^{-5} \mathrm{eV}^2]$	$7.499\substack{+0.162\\-0.131}$	$7.379\substack{+0.064\\-0.070}$	$7.447\substack{+0.192\\-0.129}$	$7.390\substack{+0.150 \\ -0.152}$	$7.49\substack{+0.19 \\ -0.17}$
$v_{31}^2 \ [10^{-3} \mathrm{eV}^2]$	$2.500\substack{+0.027\\-0.029}$	$2.510\substack{+0.018\\-0.019}$	$2.500\substack{+0.034\\-0.031}$	$2.512\substack{+0.039\\-0.041}$	$2.526\substack{+0.039\\-0.037}$
2 / d.o.f	4.1/3	5.6 / 4	3.9 / 3	4.5 / 4	_

 $\mathbf{53}$

CSD Littlest Seesaw with future accelerator and reactor exps.

□ High exclusion ability for DUNE + T2HK + JUNO + RENO-50

arXiv:1612.01999

tri-direct littlest seesaw vs. future experiments

arXiv:1905.12939

- The understanding for this model will be improved.
- With the improvement of sensitivity, more degeneracies appear.
- Degeneracies can be resolved by combining different measurements.

Flavour symmetry predicts the neutrino mixing

Higher-energy Symmetry, e.g. A₄ or S₄...etc Break the symmetry by flavoron

Seesaw I

Seesaw II

The possible form for mass matrix, i.e. mixing matrix (e.g. TBM....etc) and mass-square splittings.

Depend on how it breaks, we have direct approach,...etc. Currently, tri-direct approach is proposed.

Seesaw III

$$U_{\rm TB} = \left(\begin{array}{ccc} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{array}\right)$$

Other new physics

NSIs in matter for DUNE

arXiv:1511.06375, & TC's PhD thesis

• DUNE can detect the effect of NSIs well, but needs improvement for measuring it because of the degenercies.

Predict NSIs with flavour symmetry

Include a new charged scalar and right-handed neutrinos

UV complete model for sizeable NSIs

Predict NSIs with flavour symmetry

Impose the flavour symmetry

NSI matrix is predicted in the form of

(y	x-z-iw	x + z + iu
	x-z+iw	x+z	y-iw
	x + z - iw	y+iw	x-z

Predict NSIs with A4/Z2 flavour symmetries

$$\epsilon^{\mathrm{m}} \equiv \begin{pmatrix} \epsilon_{ee}^{\mathrm{m}} & \epsilon_{e\mu}^{\mathrm{m}} & \epsilon_{e\tau}^{\mathrm{m}} \\ \epsilon_{\mu e}^{\mathrm{m}} & \epsilon_{\mu\mu}^{\mathrm{m}} & \epsilon_{\mu\tau}^{\mathrm{m}} \\ \epsilon_{\tau e}^{\mathrm{m}} & \epsilon_{\tau\mu}^{\mathrm{m}} & \epsilon_{\tau\tau}^{\mathrm{m}} \end{pmatrix} \equiv \begin{pmatrix} \epsilon_{ee} & |\epsilon_{e\mu}| \mathrm{e}^{i\phi_{e\mu}} & |\epsilon_{e\tau}| \mathrm{e}^{i\phi_{e\tau}} \\ |\epsilon_{\mu e}| \mathrm{e}^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & |\epsilon_{\mu\tau}| \mathrm{e}^{i\phi_{\mu\tau}} \\ |\epsilon_{e\tau}| \mathrm{e}^{-i\phi_{e\tau}} & |\epsilon_{\mu\tau}| \mathrm{e}^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix} = \sum_{m,n=1,2,3} \alpha_{mn}$$

	Representations	A_4 -invariant operators	NSI textures
\mathcal{O}^1	$L \sim 3$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2\mathbb{T}_{11}-\mathbb{T}_{12}$
	$L\sim 3, F\sim 1, 1', 1'', 3$	$(\overline{L}L)_{1}(\overline{F}F)_{1}$	\mathbb{T}_{11}
\mathcal{O}^{2-8}		$(\overline{L}L)_{3_{\mathrm{S}}}(\overline{F}F)_{3_{\mathrm{S}}}$	\mathbb{T}_{12}
		$(\overline{L}L)_{3_{\mathrm{A}}}(\overline{F}F)_{3_{\mathrm{S}}}$	\mathbb{T}_{13}
	Representations	Z_2 -invariant operators	NSI textures
		$\chi((\overline{L}L)_{3_{\mathrm{S}}}(\overline{L}L)_{1,1',1''})_{3}, \chi((\overline{L}L)_{3_{\mathrm{S}}}(\overline{L}L)_{3_{\mathrm{S}}})_{3_{\mathrm{S}}},$	$\frac{1}{3}(2\mathbb{T}_{11} - \mathbb{T}_{12})$
$\chi \mathcal{O}^1$	$\chi \sim {f 3}, L \sim {f 3}$	$\chi ((\overline{L}L)_{3_{A}}(\overline{L}L)_{3_{A}})_{3_{S}}$	$+2\mathbb{T}_{21}+2\mathbb{T}_{23})$
		$\left[\chi\left((\overline{L}L)_{3_{\mathrm{A}}}(\overline{L}L)_{1,1',1''}\right)_{3},\chi\left((\overline{L}L)_{3_{\mathrm{S}}}(\overline{L}L)_{3_{\mathrm{A}}}\right)_{3_{\mathrm{S}}}\right]$	\mathbb{T}_{13}
	x = 3 L = 3 E = 1 1' 1'' 3	$\chi(\overline{L}L)_{3_{\mathrm{S}}}(\overline{F}F)_{1}$	$\mathbb{T}_{12} + \mathbb{T}_{22}$
		$\chi(\overline{L}L)_{3_{\mathbf{A}}}(\overline{F}F)_{1}$	$\mathbb{T}_{13} + \mathbb{T}_{23}$
$\sqrt{\mathcal{O}^{2-8}}$		$\chi((\overline{L}L)_{3_{\mathrm{S}}}(\overline{F}F)_{3_{\mathrm{S}}})_{3_{\mathrm{S}}}$	$2\mathbb{T}_{12} - \mathbb{T}_{22}$
	$v \sim 3 L \sim 3 F \sim 3$	$\chi((\overline{L}L)_{3_{\mathrm{A}}}(\overline{F}F)_{3_{\mathrm{S}}})_{3_{\mathrm{S}}}$	$2\mathbb{T}_{13} - \mathbb{T}_{23}$
		$\chi((\overline{L}L)_{3_{\mathrm{S}}}(\overline{F}F)_{3_{\mathrm{S}}})_{3_{\mathrm{A}}}$	\mathbb{T}_{32}
		$\chi ((\overline{L}L)_{3_{\mathrm{A}}}(\overline{F}F)_{3_{\mathrm{S}}})_{3_{\mathrm{A}}}$	\mathbb{T}_{33}

arXiv:1801.05656

 $_{n}\mathbb{T}_{mn}/N_{mn},$ (40)

N_{mn} is the normalisation factor.

$$\begin{split} \mathbb{T}_{11} &\equiv \mathbb{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \mathbb{T}_{12} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \qquad \mathbb{T}_{13} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \\ \mathbb{T}_{21} &= \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \qquad \mathbb{T}_{22} = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & 2 \\ -1 & 2 & 0 \end{pmatrix}, \qquad \mathbb{T}_{23} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\ \mathbb{T}_{31} &= \begin{pmatrix} 0 & -i & i \\ i & 0 & -i \\ -i & 0 & 0 \end{pmatrix}, \qquad \mathbb{T}_{32} = \begin{pmatrix} 0 & i & -i \\ -i & 0 & -2i \\ i & 2i & 0 \end{pmatrix}, \qquad \mathbb{T}_{33} = \begin{pmatrix} 0 & i & i \\ -i & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \end{split}$$

Testing Z2 symmetry

$$\begin{pmatrix} y & x-z-iw \, x+z+iw \ x-z+iw & x+z & y-iw \ x+z-iw & y+iw & x-z \end{pmatrix}$$

Current constraints

1σ bou	nds of global fit results			G	loł	oal Fit	Glo	bal Fit	DU	JNE sensitivity
$ ilde{\epsilon}^u_{ee}$	[0.188, 0.376]	$ ilde{\epsilon}^d_{ee}$	[0.203, 0.384]	w	\boldsymbol{u}	_	w^d	_	w	[-0.013, 0.025]
$\widetilde{\epsilon}^{u}_{\tau\tau}$	[-0.003, 0.012]	$\widetilde{\epsilon}^{d}_{ au au}$	[-0.003, 0.012]	x^{2}	u	$\left[-0.034, 0.013 ight]$	x^d	$\left[-0.035, 0.012 ight]$	x	[-0.1, 0.1]
$\epsilon_{e\mu}^{u}$ $\epsilon_{e\tau}^{u}$	[-0.038, 0.062]	$\epsilon_{e\mu} \ \epsilon^d_{e au}$	[-0.036, 0.066]	y^{i}	r	$\left[-0.004, 0.003 ight]$	y^d	[-0.004, 0.003]	y	[-0.01, 0.01]
$\epsilon^{u}_{\mu\tau}$	[-0.004, 0.003]	$\epsilon^{d}_{\mu au}$	[-0.004, 0.003]	z^{i}	r	$\left[-0.002, 0.005\right]$	z^d	$\left[-0.002, 0.005 ight]$	z	[-0.007, 0.017]
	. ,]	μı								

Current constraints predict the form

Testing Z₂ for DUNE

	Parameter			
d.o.f.	$ ilde{\epsilon}_{ee}$	$ ilde{\epsilon}_{ au au}$	$\epsilon_{e\mu}$	
7	2.2 <i>o</i> -4.7 <i>o</i>	~0	3.1 <i>o</i> –6.1 <i>o</i>	
13	1.1 <i>σ</i> –3.7 <i>σ</i>	~0	2σ–5.1σ	

arXiv:1801.05656

• NSI matrix is greatly simplified, and its predictivity is enhanced.

Low energy mu-tau reflection symmetry

mu-tau reflection symmetry

$$\nu_e \to \nu_e^c, \quad \nu_\mu \to \nu_\tau^c, \quad \nu_\tau \to \nu_\mu^c.$$

$$M_{\nu}M_{\nu}^{\dagger} = \begin{pmatrix} \mathbf{a} & \mathbf{b} & \mathbf{b}^{*} \\ \mathbf{b}^{*} & \mathbf{c} & \mathbf{d} \\ \mathbf{b} & \mathbf{d}^{*} & \mathbf{c} \end{pmatrix} , \quad V = A \begin{pmatrix} 1 + \tilde{\epsilon}_{ee} & \epsilon_{e\mu} & \epsilon_{e\mu}^{*} \\ \epsilon_{e\mu}^{*} & 0 & \epsilon_{\mu\tau} \\ \epsilon_{e\mu} & \epsilon_{\mu\tau}^{*} & 0 \end{pmatrix}$$

Constraints w/o mu-tau

arXiv:1911.00213

Constraints w/ mu-tau

• The parameter space becomes smaller, because of the reduction of number of d.o.f and the smaller allowed region for the e-tau component.

Parameters	1σ w/o $\mu- au$	$1\sigma \text{ w}/\mu - \tau$
$ ilde{\epsilon}_{ee}$	$[-2.5, \ 1.2]$	$\left[-0.13, 0.13 ight]$
$ \epsilon_{e\mu} $	$[0, \ 0.12]$	$[0,\ 0.1]$
$ \epsilon_{e au} $	$[0, \ 0.3]$	$[0, \ 0.1]$
$ \epsilon_{\mu au} $	$[0, \ 0.2]$	$[0, \ 0.12]$

