Lepton Flavor Structure & Mum-antimuonium Conversion

IHEP/UCAS, Beijing

◆ 中微子物理研究现状
◆ 质量模型与实验观测
◆ 轻子味破坏与味结构
◆ 中微子物理未来展望

第三届"高功率强子加速器上的粒子物理前沿研究"研讨会 东莞,2019/12/08

Solar Neutrinos

Atmospheric Neutrinos

From Kajita, ICHEP 16

Yoji Totsuka T. Kajita (1942-2008)

Reactor Neutrinos

Discovery of reactor neutrino oscillations

A complete picture of three-flavor neutrino oscillations!

Lepton Flavor Mixing

Standard Parametrization of the PMNS Matrix

Quarks vs. Leptons: A big puzzle of fermion flavor mixings

Latest Results from T2K

Best-fit point: δ_{CP} = −1.885 rad/252°(NO) or δ_{CP} = −1.382 rad/280°(IO)
 The 2σ range: δ_{CP} ∈ [−2.97, −0.63] rad (NO) or δ_{CP} ∈ [−1.78, −0.98] rad (IO)
 The CP-conserving values of δ_{CP} (0 and π) are excluded at the 2σ level

Latest Results from NOvA

6

Global-fit Analysis of Oscillation Data

$m_1 < m_2 < m_3$ (NO) or $m_3 < m_1 < m_2$ (IO) NuFIT 4.1 (2019)							
		Normal Ord	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 6.2)$			
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
data	$\sin^2 heta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$		
	$ heta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82\substack{+0.78\\-0.76}$	$31.61 \rightarrow 36.27$		
heric	$\sin^2 heta_{23}$	$0.558\substack{+0.020\\-0.033}$	$0.427 \rightarrow 0.609$	$0.563\substack{+0.019\\-0.026}$	$0.430 \rightarrow 0.612$		
loson	$ heta_{23}/^{\circ}$	$48.3^{+1.1}_{-1.9}$	$40.8 \rightarrow 51.3$	$48.6^{+1.1}_{-1.5}$	$41.0 \rightarrow 51.5$		
atn	$\sin^2 heta_{13}$	$0.02241\substack{+0.00066\\-0.00065}$	$0.02046 \rightarrow 0.02440$	$0.02261\substack{+0.00067\\-0.00064}$	$0.02066 \rightarrow 0.02461$		
t SK	$ heta_{13}/^\circ$	$8.61\substack{+0.13 \\ -0.13}$	$8.22 \rightarrow 8.99$	$8.65\substack{+0.13 \\ -0.12}$	$8.26 \rightarrow 9.02$		
vithou	$\delta_{ m CP}/^{\circ}$	222^{+38}_{-28}	$141 \rightarrow 370$	285^{+24}_{-26}	$205 \rightarrow 354$		
м	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$		
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.523^{+0.032}_{-0.030}$	$+2.432 \rightarrow +2.618$	$-2.509^{+0.032}_{-0.030}$	$-2.603 \rightarrow -2.416$		

- Reactor: JUNO, RENO-50
- LBL Acc.: T2K, NOvA, LBNF/DUNE
- Atm: PINGU, ORCA, Hyper-K, INO

- LBL Acc.: LBNF/DUNE
- Super-B: ESSvSB, MOMENT
- NF & Beta-Beams

Constraints on neutrino masses

- nstraints on absolute neutrino masses Tritium β decays (90% C.L.) $m_{\beta} < 1.1 \text{ eV}$ (KATRIN, first result 2019) Neutrinoless double- β decays (90% C.L.) $m_{\beta\beta} < (0.05 \sim 0.16) \text{ eV}$ (KamLAND-Zen) $(0.17 \sim 0.49) \text{ eV}$ (EXO) $(0.12 \sim 0.26) \text{ eV}$ (GERDA) $(0.11 \sim 0.50) \text{ eV}$ (CUORE) **Cosmological observations (95% probability)** $\Sigma < 0.12 \text{ eV}$ (Planck)

Current Status of Neutrino Physics

Open Questions

- Normal or Inverted (sign of Δm_{32}^2 ?)
- Leptonic CP Violation ($\delta = ?$)
- Octant of θ₂₃ (> or < 45°?)
- Absolute Neutrino Masses ($m_{\text{lightest}} = 0$?)
- Majorana or Dirac Nature ($v = v^{C}$?)
- Majorana CP-Violating Phases (how?)
- Extra Neutrino Species
- Exotic Neutrino Interactions
- Other LNV & LFV Processes
- Leptonic Unitarity Violation

- Origin of Neutrino Masses
- Flavor Structure (Symmetry?)
- Quark-Lepton Connection
- Relations to DM, BAU, or NP

Flavor Puzzles

Dirac vs. Majorana neutrinos

The simplest way to accommodate tiny neutrino masses

• Dirac Neutrinos

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \overline{\nu_{\rm R}} \mathrm{i} \partial \!\!\!/ \nu_{\rm R} - \left[\overline{\ell_{\rm L}} Y_{\nu} \tilde{H} \nu_{\rm R} + \mathrm{h.c.} \right]$$

Generate Dirac v masses in a similar way to that for quarks and charged leptons, after the spontaneous gauge symmetry breaking

Difficulties with Dirac neutrinos

- Tiny Dirac masses worsen fermion mass hierarchy problem (i.e., m_i/m_t < 10⁻¹²)
- Mandatory lepton number conservation, which is actually accidental in the SM

Majorana Neutrinos

$$-\left[\frac{1}{2}\overline{\nu_{\rm R}^{\rm C}}M_{\rm R}\nu_{\rm R}+{\rm h.c.}\right]$$

Generate tiny Majorana v masses via the so-called seesaw mechanism

$$M_{\nu} = v^2 Y_{\nu} M_{\rm P}^{-1} Y_{\nu}^{\rm T}$$

 $O(0.1 \, {\rm eV}) \qquad O(10^{14} \, {\rm GeV})$

- Retain the SM symmetries
- GUT or TeV energy scale?

Guide the theorists to build a model for tiny v masses

Seesaw models for Majorana neutrinos 12

Majorana neutrinos: a natural way to understand neutrino masses

Type-I: SM + 3 right-handed Majorana v's (Minkowski 77; Yanagida 79; Glashow 79; Gell-Mann, Ramond, Slanski 79; Mohapatra, Senjanovic 79)

Type-II: SM + 1 Higgs triplet (Magg, Wetterich 80; Schechter, Valle 80; Lazarides et al 80; Mohapatra, Senjanovic 80; Gelmini, Roncadelli 80)

Type-III: SM + 3 triplet fermions (Foot, Lew, He, Joshi 89)

- Can naturally be embedded into the SO(10) GUT (e.g., type-I + type-II seesaw)
- Responsible for both tiny neutrino masses and matter-antimatter asymmetry

Majorana vs. Dirac

1σ 2σ 3σ

1

Majorana vs. Dirac

Schechter-Valle Theorem (82): If the 0v2β decay happens, there must exist an effective Majorana neutrino mass term.

Quantitatively, the 4-loop Majorana mass from the butterfly diagram is **EXTREMELY** small:

$$\delta m_{\nu} = \boldsymbol{O}(10^{-29} \text{ eV})$$

(Duerr, Lindner, Merle, 11; Liu, Zhang, Zhou, 16)

- Assume 0v2β decays are governed by short-distance operators
- The Schechter-Valle (Black Box) theorem is qualitatively correct, but the induced Majorana masses are too small to be relevant for neutrino oscillations
- Other mechanisms are needed to generate neutrino masses

Test of Seesaw Models

A natural seesaw scale (e.g., type-I)

Close to an energy scale of fundamental physics: the GUT scale

Seesaw-induced hierarchy problem

Vissani, 98; Casas et al., 04; Abada et al., 07

$$\delta M_{H}^{2} = \begin{cases} -\frac{y_{i}^{2}}{8\pi^{2}} \left(\Lambda^{2} + M_{i}^{2} \ln \frac{M_{i}^{2}}{\Lambda^{2}}\right) & \text{(Type I)} \\ \frac{3}{16\pi^{2}} \left[\lambda_{3} \left(\Lambda^{2} + M_{\Delta}^{2} \ln \frac{M_{\Delta}^{2}}{\Lambda^{2}}\right) + 4\lambda_{\Delta}^{2} M_{\Delta}^{2} \ln \frac{M_{\Delta}^{2}}{\Lambda^{2}}\right] & \text{(Type II)} \\ -\frac{3y_{i}^{2}}{8\pi^{2}} \left(\Lambda^{2} + M_{i}^{2} \ln \frac{M_{i}^{2}}{\Lambda^{2}}\right) & \text{(Type III)} \end{cases}$$

In type-I seesaw models:

$$M_i \lesssim 10^7 \text{ GeV} \left(\frac{0.2 \text{ eV}}{m_i}\right)^{1/3}$$

for $\delta M_H^2 \sim 0.1 \text{ TeV}^2$

Test of Seesaw Models

Seesaw models at the EW or TeV scales

motivated by the naturalness and testability problems of conventional seesaws

Test of Seesaw Models

Lepton Flavor Structure: Symmetries

Flavor Symmetry

Tri-bimaximal neutrino mixing matrix Harrison, Pekins, Scott, 02; Xing, 02; He, Zee, 03

$$V_0 = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Paradigm of flavor symmetries

PMNS matrix is (partially) determined by the structure of symmetry groups

See, Ishimori et al., 10; Altarelli, Feruglio, 10; King et al., 14, King, 18; Xing, 19, for recent reviews

Lepton Flavor Structure: Symmetries

Allowed ranges of PMNS matrix elements (@ 3o)

 $\begin{pmatrix} |U_{e1}| & |U_{e2}| & |U_{e3}| \\ |U_{\mu1}| & |U_{\mu2}| & |U_{\mu3}| \\ |U_{\tau1}| & |U_{\tau2}| & |U_{\tau3}| \end{pmatrix} = \begin{pmatrix} 0.801 \rightarrow 0.845 & 0.514 \rightarrow 0.580 & 0.137 \rightarrow 0.158 \\ 0.225 \rightarrow 0.517 & 0.441 \rightarrow 0.699 & 0.614 \rightarrow 0.793 \\ 0.246 \rightarrow 0.529 & 0.464 \rightarrow 0.713 & 0.590 \rightarrow 0.776 \end{pmatrix}$

In the standard parametrization:

μ-τ symmetry $|U_{\mu i}| = |U_{\tau i}|$:

(1) $\theta_{23} = 45^{\circ} \& \theta_{13} = 0$ (excluded)

Xing, Zhou, 08, 14; Xing, Luo, 14; Y.L. Zhou, 15 Xing, Zhao, Rept. Prog. Phys., 16, for a review

(2) $\theta_{23} = 45^{\circ} \& \delta = 90^{\circ} \text{ or } 270^{\circ} \text{ (allowed)}$

Partial μ - τ symmetry $|U_{\mu 1}| = |U_{\tau 1}|$: $\theta_{23} \neq 45^{\circ} \& \delta \approx 270^{\circ}$ (favored by NOvA)

μ-τ reflection symmetry Harrison, Scott, 02, 04; Grimus, Lavoura, 04

$$M_{\nu} = \begin{pmatrix} A & B & B^* \\ B & C & D \\ B^* & D & C^* \end{pmatrix} \quad \text{Invariant under:} \quad \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \to \begin{pmatrix} \nu_e^c \\ \nu_\tau^c \\ \nu_\mu^c \end{pmatrix}$$

Predictions: $\theta_{23} = 45^{\circ}$, $\delta = 90^{\circ}$ or 270°, but θ_{12} and θ_{13} are left arbitrary

Lepton Flavor Structure: Texture Zeros

Two-zero Textures of M_{ν}

Frampton, Glashow, Marfatia, 02; Xing, 02; Fritzsch, Xing, Zhou, 11

Model building in the type-I+II seesaw model

$l_{\alpha L}$	$E_{\alpha L}$	NR	Φ_i	φ,φ	Δ
1,1',1"	3	1	3	1,1'	1
$M_{\nu} = u$	$\begin{pmatrix} 0 \\ 0 & l \\ a_{\Delta} \end{pmatrix}$	$\begin{pmatrix} 0 & a_{\Delta} \\ p_{\Delta} & 0 \\ 0 & 0 \end{pmatrix}$	$-\frac{v^2}{M}$	$\begin{pmatrix} a_{\nu}^2 & 0 \\ 0 & 0 \\ 0 & b_{\nu}c \end{pmatrix}$	$\begin{pmatrix} 0 \\ b_{\nu}c_{\nu} \\ c_{\nu} & 0 \end{pmatrix}$

Lepton Flavor Structure: CLFV

Shopping list of charged lepton-flavor violation (CLFV) (Generation of charged lepton is changed in CLFV processes.) 1. $\mu \rightarrow e \text{ transition processes}$ • $\mu^+ \rightarrow e^+ \gamma$ 2. $\tau \rightarrow \mu/e$ transition processes • $\tau \rightarrow \mu/e + \gamma$ • $\mu^+ \rightarrow e^+ e^- e^+$ • $\tau \rightarrow \mu/e + ll$ • $\mu - e$ conversion in nuclei • $\tau \rightarrow \mu/e + hadrons$ • $B^0 \to \tau \mu$ muonium-antimuonium transition: $(\mu^+ e^-) \rightarrow (\mu^- e^+)$ B/D/K decaying into mu e such as $D^0
ightarrow h^+ h^- \mu e$ (F.Wilson@parallel session) **One slide from Hisano, LP 2019** $K^+ \to \pi^+ \mu e$ (R.Marchevski@parallel session)

Nowadays CLFV decays of heavy particles, such as $H \rightarrow \tau \mu$, are available.

In my talk I will mainly concentrate into lepton-flavor violating decay of charged leptons as in my title.

CLFV as natural as neutrino oscillations in neutrino mass models
 Necessary to probe lepton flavor structure/Complementary info.
 Pay more attention to muonium-antimuonium conversion

History of Theoretical Studies

Pontecorvo, 1957

MESONIUM AND ANTIMESONIUM

B. PONTECORVO

Joint Institute for Nuclear Research

Submitted to JETP editor May 23, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 549-551 (August, 1957)

Indeed, the transitions

$$(\mu^+ e^-) \to (\nu + \widetilde{\nu}) \to (\mu^- e^+) \tag{1}$$

would be induced by the same interaction that is responsible for the decay of the μ -mesons. The probability $1/\theta$ of the real decay process

$$(\mu^+e^-) \rightarrow \nu + \tilde{\nu} + 106.1 \text{ Mev},$$
 (2)

which can be easily obtained by taking into account the size of th	<u>ze of the mesonium</u> , is found to be 10 ^{-•} sec ⁻¹ , AUGUST 15, 1961
Conversion of Muonium into Antimuonium*	Feinberg, Weinberg, 1961
G. FEINBERG† Columbia University, New York, New York	$H = C \bar{\psi}_{\mu} \gamma_{\lambda} (1 + \gamma_5) \Psi_e \bar{\psi}_{\mu} \gamma^{\lambda} (1 + \gamma_5) \Psi_e, \qquad (1)$
AND S. WEINBERG University of California, Berkeley, California (Received April 4, 1961)	which would yield a matrix element for conversion of $M(\equiv \mu^+ e^-)$ into $\overline{M}(\equiv \mu^- e^+)$ equal to $\langle \overline{M} H M \rangle = \delta/2$,

22

History of Theoretical Studies

Extend the SM by three right-handed neutrinos: Dirac neutrino model

Effective Hamiltonian for $M - \overline{M}$ conversion

$$\mathcal{H}_{\text{eff}} = \frac{G_A}{\sqrt{2}} \bar{\psi}_{\mu} \gamma^{\alpha} (1 + \gamma_5) \psi_e \bar{\psi}_{\mu} \gamma_{\alpha} (1 + \gamma_5) \psi_e$$

$$+\frac{G_B}{\sqrt{2}}\overline{\psi}_{\mu}(1-\gamma_5)\psi_e\overline{\psi}_{\mu}(1-\gamma_5)\psi_e+\mathrm{H.c.}$$

Massive Majorana neutrinos

Theoretical predictions

$$G_A, G_B < \frac{G_F^2 \sqrt{2}}{8\pi^2} m_{\mu}^2 = 7 \times 10^{-9} G_F$$

Swartz, PRD, 1989 & refs therein

Doubly-charged Higgs boson

Type-II Seesaw Models

Extend the SM by introducing a scalar triplet with Y = -2

$$\mathcal{L}_{\rm m} = -\frac{1}{2} \overline{\ell_{\alpha \rm L}} (Y_{\Delta})_{\alpha\beta} \, i\sigma_2 \Delta \ell^{\rm C}_{\beta \rm L} + \text{h.c.} \qquad \Delta \equiv \sqrt{2} \begin{pmatrix} \Delta^-/\sqrt{2} & -\Delta^0 \\ \Delta^{--} & -\Delta^-/\sqrt{2} \end{pmatrix}$$

The simplest scalar potential

$$V(H,\Delta) = -\mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \frac{1}{2} M_{\Delta}^2 \operatorname{Tr} \left(\Delta^{\dagger} \Delta \right) - \left[\lambda_{\Delta} M_{\Delta} H^T i \sigma_2 \Delta H + \text{h.c.} \right]$$

After the spontaneous gauge symmetry breaking

Completely reconstructed from neutrino oscillation data

The model receives constraints from precision electroweak data, g-2, LFV and direct searches from LHC (depending on M_{Δ} & v_{Δ})

 $\boldsymbol{v}_{\Delta} < \mathbf{10^{-4} \ GeV}: \Delta^{\pm\pm} \rightarrow l^{\pm}l^{\pm} \qquad \boldsymbol{v}_{\Delta} > \mathbf{10^{-4} \ GeV}: \Delta^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$

Type-II Seesaw Models

Precision electroweak data (e.g., ho parameter): $v_{\Delta} < 1 \text{ GeV}$

LFV $(\mu \rightarrow e\gamma/\mu \rightarrow eee/\mu N \rightarrow eN)$: $M_{\Delta}v_{\Delta} > 100 \text{ GeV} \cdot eV$

Calculate the probability of $M \cdot \overline{M}$ conversion Li, Schmidt, 1907.06963

$$\mu^{+} \qquad \mu^{-} \qquad \mu^{-} \qquad \mu^{-} \qquad H_{M\bar{M}} = \frac{(Y_{\Delta})_{ee}(Y_{\Delta})_{\mu\mu}^{*}}{2M_{\Delta}^{2}} [\bar{\mu}\gamma^{\sigma}P_{L}e] \cdot [\bar{\mu}\gamma_{\sigma}P_{L}e]$$

$$e^{-} \qquad e^{+} \qquad H_{M\bar{M}} = \frac{(Y_{\Delta})_{ee}(Y_{\Delta})_{\mu\mu}^{*}}{2M_{\Delta}^{2}} [\bar{\mu}\gamma^{\sigma}P_{L}e] \cdot [\bar{\mu}\gamma_{\sigma}P_{L}e]$$
Without
$$P_{M\bar{M}} = \sum_{i=1}^{4} |\langle \lambda_{i}^{\bar{M}} | H_{M\bar{M}} | \lambda_{i}^{M} \rangle|^{2} / 2\gamma^{2} \qquad \text{Muon decay Rate:} \qquad \gamma = G_{F}^{2} m_{\mu}^{5} / 192\pi^{3}$$

The constraint on the probability

Willmann *et al.*, PRL, 1999

$$P_{M\bar{M}}(B = 0.1 T) = 0.36 P_{M\bar{M}} < 8.3 \times 10^{-11} \implies \frac{|(Y_{\Delta})_{ee}| |(Y_{\Delta})_{\mu\mu}|}{(M_{\Delta}^2/\text{GeV}^2)} < 2.0 \times 10^{-11}$$

 10^{-7}

Type-II Seesaw Models

Connection with neutrino mass matrix

$$\frac{|(Y_{\Delta})_{ee}||(Y_{\Delta})_{\mu\mu}|}{(M_{\Delta}^2/\text{GeV}^2)} = \frac{|(M_{\nu})_{ee}||(M_{\nu})_{\mu\mu}|}{(M_{\Delta}^2/\text{GeV}^2) \cdot v_{\Delta}^2} < 2.0 \times 10^{-7}$$

 $0\nu\beta\beta$ decays dominated by light neutrinos for $M_{\Delta} > 100$ GeV

 $|(M_{\nu})_{ee}| < 0.1 \text{ eV}$

Take $M_{\Delta}v_{\Delta} = 800 \text{ GeV} \cdot \text{eV}$ to evade the constraints

Come back to viable neutrino mass matrices

$$\mathbf{A_2} \begin{pmatrix} 0 & \times & 0 \\ \times & \times & \times \\ 0 & \times & \times \end{pmatrix} \qquad \mathbf{B_2} \begin{pmatrix} \times & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix}$$

 $(Y_{\Delta})_{ee}(Y_{\Delta})_{\mu\mu} = \mathbf{0} \qquad (Y_{\Delta})_{ee}(Y_{\Delta})_{\mu\mu} \neq \mathbf{0}$

For two-zero texture B_2 $\frac{|(M_v)_{ee}| |(M_v)_{\mu\mu}|}{(M_A^2/\text{GeV}^2) \cdot v_A^2} \approx 1.6 \times 10^{-8}$

Discovery may be around the corner (one order of magnitude below)!

Outlook

- Neutrino mass ordering and lepton CP violation will be measured in the oscillation experiments
- Possible to pin down the absolute neutrino mass and the Majorana nature of massive neutrinos
- LFV and LNV processes may shed light on the lepton flavor structure
- Future large hadron and lepton colliders will help us explore the origin of neutrino masses

A long way to go, but be optimistic that the future of neutrino physics is bright!