

Review of COMET

Wu Chen, Osaka University On behalf of COMET collaboration December 7 2019 at CSNS

Outline

➤ About COMET

Physics Motivation

Design of the COMET Experiment

Current Status of the COMET Experiment

➤ Summary

About COMET

COherent Muon Electron Transition

- Utilizing the proton source from J-PARC main ring, COMET searches for muon to electron conversion process which violates charged lepton flavor conservation.
 - $\mu^- N \rightarrow e^- N$
 - Signal electron is mono-energetic: ~105 MeV

- COMET aims at a single event sensitivity $(S.E.S) = 2.6 \times 10^{-17}$
 - 4 orders of magnitude improvement!
 - Using slow extraction with 8 GeV proton at 56 kW

The COMET collaboration

~200 members, 41 institutes from 17 countries Still growing!

Physics Motivation

Charged Lepton Flavor Violation

cLFV highly suppressed in SM+ m_{ν} : $\mathcal{B}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,2} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \sim 10^{-54}$

S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340

Yet widely predicted in NP models

Clean field to search for new physics!

New Physics Energy Scale of CLFV

• Effective field theory approach $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n \ge 1} \frac{C_{ij}^{4+n}}{\Lambda^n} \mathcal{O}^{4+n}$

Current Limit	Experiment		$ C_a \ [\Lambda = 1 \ {\rm TeV}]$	$\Lambda \text{ (TeV) } [C_a = 1]$	CLFV Process
* 5.7×10 ⁻¹³	MEG	$C^{\mu e}_{e\gamma}$	2.1×10^{-10}	6.8×10^{4}	$\mu ightarrow e\gamma$
Phys. Rev. Le	tt. 110 (20)	$C_{\ell e}^{\mu\mu\mu e,e\mu\mu\mu}$	1.8×10^{-4}	75	$\mu \to e \gamma \; [\texttt{1-loop}]$
j ()		$C_{\ell e}^{\mu \tau \tau e, e \tau \tau \mu}$	1.0×10^{-5}	312	$\mu \to e \gamma \; [\texttt{1-loop}]$
1×10^{-12}	SINDRUM	$C^{\mu e}_{e\gamma}$	4.0×10^{-9}	$1.6 imes 10^4$	$\mu \to eee$
Nucl.Phys. B2	3299 (1988)	$C^{\mu eee}_{\ell\ell,ee}$	2.3×10^{-5}	207	$\mu \to eee$
		$C_{\ell e}^{\mu eee,ee\mu e}$	3.3×10^{-5}	174	$\mu \to eee$
7×10^{-13}	SINDRUMII	$C^{\mu e}_{e\gamma}$	5.2×10^{-9}	$1.4 imes 10^4$	$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$
Eur.Phys.J. C	7 (2006)	$C^{e\mu}_{\ell q,\ell d,ed}$	$1.8 imes 10^{-6}$	745	$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$
* <i>Current limit:</i> 4.2×10 ⁻¹³ Eur.Phys.J. C76 (2016)		$C^{e\mu}_{eq}$	9.2×10^{-7}	$1.0 imes 10^3$	$\mu^{-}\mathrm{Au} \to e^{-}\mathrm{Au}$
		$C^{e\mu}_{\ell u,eu}$	2.0×10^{-6}	707	$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$

F. Feruglio, P. Paradisi and A. Pattori, Eur. Phys. J. C 75 (2015) no.12, 579 G. M. Pruna and A. Signer, JHEP 1410 (2014) 014

• Given Dim-6 operators (lowest possible order for CLFV), factor 10,000 in precision = factor 10 in energy scale.

Search for Muon to Electron Conversion

Design of the COMET Experiment

MELC

- Improve the production and capture efficiency
 - Thick target with super conducting solenoid as capture magnet
- Clean muon beam
 - Long beam line with momentum selection
- Search for signal with the special momentum
 - Light detector to provide precise measurement

Production target and the capture magnet

- 8 GeV 56 kW proton beam
- Thick target with 1~2 hadron interaction length
- Powerful capture magnet: 5 T
 - Large inner bore to fit in the shielding
 - Adiabatic decreasing field: focusing and mirroring
- Expected muon yield: 10¹¹ muon/sec! (10⁸ @ PSI)

Transportation solenoid

Stopping target and detector system

To control the background

- Intrinsic physics background
 - Mostly from muon decay in orbit (DIO)
 - Calculated by Czarnecki with radiative correction. Branching ratio drops with order-5 function near end point.
 - Momentum resolution required to be better than 200 keV/c
 - little false tracking may cause big problems!

1s state in a muonic atom

nuclear muon capture

 $\mu^- + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$

To control the background

- Beam related background
 - Energetic particles in beam with E>100MeV
 - Mostly prompt. Can be suppressed by a delayed measurement window (~700 ns)
 - Raise a requirement to stopping target material: lifetime of muonic atom should be long enough.
 - Decided by pions. Longer beamline can help.
 - Some due to leaked proton. Proton extinction factor required to be $< 10^{-10}$.

To control the background

- Cosmic ray background
 - Cosmic muon may introduce ~105 MeV electrons in detector.
 - Solution: cover the system with cosmic ray veto detectors.
 Expecting veto efficiency > 99.99%.
 - Radiation level is the challenge towards higher intensity.

Physics Sensitivity

Simulation in Geant4 using software framework ICEDUST

Staged plan of COMET

Proton beam: 8 GeV, 0.4 mA, 3.2 kW

COMET Phase-I, 5 months data taking

- Directly measure the muon beam with prototypes of Phase-II detector.
 - Very useful to guide Phase-II
- Search for μe conversion with cylindrical detector (CyDet) with S.E.S. = 3×10^{-15} (2 orders of magnitude improvement).

Simulation in Geant4 using software framework ICEDUST

Cylindrical Detector (CyDet)

- Specially designed for Phase-I. Consists of:
 - Cylindrical trigger hodoscope (CTH):
 - Two layers: plastic scintillator for t0 and Cerenkov counter for PID.
 - Cylindrical drift chamber (CDC):
 - All stereo layers: z information for tracks with few layers' hits.
 - Helium based gas: minimize multiple scattering.
 - Large inner bore: to avoid beam flash and DIO electrons.

Monte Carlo study of COMET Phase-I

- The optimization of COMET Phase I is finished. Detailed performance is estimated with Monte Carlo studies. TDR was accepted by PTEP.
 - Sensitivity:
 - Total acceptance of signal is 0.041
 - Can reach 3×10^{-15} SES in 150 days.
 - Background:
 - With 99.99% CRV total expected background is 0.032
 - Trigger rate:
 - Average trigger rate ~10kHz (after trigger with drift chamber hits)

Event selection	Value
Online event selection efficiency	0.9
DAQ efficiency	0.9
Track finding efficiency	0.99
Geometrical acceptance + Track quality cuts	0.18
Momentum window ($\varepsilon_{\rm mom}$)	0.93
Timing window $(\varepsilon_{\text{time}})$	0.3
Total	0.041

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed Beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Anti-proton induced backgrounds	0.0012
Others	Cosmic rays [†]	< 0.01
Total		0.032

† This estimate is currently limited by computing resources.

Other Physics Topics on COMET

- $\mu^- N_z \rightarrow e^+ N_{Z-1}$: Lepton number violation (LNV)
 - Current limits: $\mu^- Ti \rightarrow e^+ Ca(gs) \le 1.7 \times 10^{-12}$ $\mu^- Ti \rightarrow e^+ Ca(ex) \le 3.6 \times 10^{-12}$
 - Can improve with a proper target

Phys. Lett. B422 (1998)

Phys. Lett. B764 (2017) Phys. Rev. D96 (2017)

• $\mu^- e^- \rightarrow e^- e^-$: μ^- and e^- overlap proportional to Z^3

Phys. Rev. Lett. 105 (2010) Phys. Rev. D93 (2016) 076006 Phys. Rev. D97 (2018) 015017

- $\mu^- \rightarrow e^- X$: X can be a new light boson, axion, etc.
 - feasibility being studied in COMET

Current Status of the COMET Experiment

COMET Facility

- Experimental Hall building completed
- Cryogenic system under construction
- Proton beamline will be ready this year
 - Shield wall & power station completed. 2 more magnets to be located soon.

Proton beam from J-PARC MR

- To make the proton extinction factor $< 10^{-10}$
 - Shift the kicker phase by half period to avoid residual protons in the empty bucket.

• Tested SX in early 2018, proton extinction factor $< 6 \times 10^{-11}$

*The rear end small peak is solved this year!

Proton Beam Monitor

- Measure the proton beam profile and monitor extinction
 - First attempt to get real time profile for such intense beam!

Diamond semiconductor

- High radiation tolerance
- Simple geometry
- Fast response
- Tested at J-PARC main ring
 - Excellent timing response
- Considering backup plans:
 - Gallium Nitride
 - TiO2 nanotube arrays

Production Target System

- Phase-I graphite target (IG-43) can be cooled by radiation with 3.2 kW beam.
- Remote handling and cask design of target is in progress.
- Shielding blocked with water cooling is being designed.

Solenoids

- Capture solenoid
 - Last coil under winding.
- Transport solenoid
 - Installed and ready for cryogenic test.
- Bridge & detector solenoid
 - DS coil and cryostat ready. BS coil delivered.
- Cryogenic system:
 - Refrigerator test completed.
 - Helium transfer tube in production.

StrEcal

- Straw tube detector
 - Finished vacuum test with 20 um straw tubes.
 - Mass production for Phase-I finished.
 - Tested with 100 MeV electron beam. 150 um spatial resolution achieved.
- Electromagnetic calorimeter
 - Tested GSO and LYSO. Preliminary resolutions are 5.7% and 4.6% for each. LYSO chosen as final option.
- Front end electronics
 - Finished designing (ROESTI/EROS) based on DRS4 with GHz sampling rate.
 - Radiation tests results published.

Front end electronics: ROESTI/EROS

R&D of straw for Phase-II

- 12 micro meter thin straw produced for Phase-II!
- Diameter 5 mm
 - 1 bar overpressure straw tube diameter measurement shows 0.1 um accuracy.
- Over pressurization test holding more then 4 bar

CyDet

- Cylindrical Drift chamber (CDC)
 - Prototype tests finished in 2015. 150 um spatial resolution and 99% hit efficiency were achieved.
 - Construction of the chamber was finished in 2016.
 - Cosmic ray test is under data taking phase.
- Front end electronics •
 - Based on RECBE boards from BELLE-II
 - Finished the production and mass tests of 108 boards.
 - Radiation tests are published / to be published.
- Trigger system
 - Cylindrical trigger hodoscope (CTH) under mechanical design.
 - Trigger logic and trigger board design finished. Communication tests with FCT-FC7 trigger system is on going.

Summary

- COMET is an experiment at J-PARC searching for muon to electron process.
 - Aims at S.E.S = 2.6×10^{-17} (4 orders of magnitude improvement) with 1 year beam time using 56 kW 8 GeV proton beam.
 - With the same beam power, 10 times better sensitivity ($\mathcal{O}(10^{-18})$) is likely and optimization is on the way.
- COMET will be carried out in two phases and Phase-I is under construction.
 - Aims at S.E.S = 3×10^{-15} (2 orders of magnitude improvement) with 150 days beam time using 3.2 kW 8 GeV proton beam.
 - Will directly measure the muon beam.
- COMET Phase-II R&D study is on going and will be adjusted based on Phase-I result.

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Thank You!

1

Backup slides

"What does cause K4_rear Mystery" ???

- Most suspicious assumption:
 - * Tail of Kicker Excitation ?
 - Injection Kicker filed has a small but a certain trailing component
 - Shift for "Single Bunch Kicking" is half a excitation duration (= 600 nsec)
 - Shift of 600 nsec might be not long enough
 - → Can cause imperfect extinction
- * Why only K4_rears shows a Mystery ?
 - Every injection batch has a following injection immediately except for K4
 - Kicker excitation can extinct the residual protons in the prior batch

- Can be tested quickly just shit the kicker timing little more
- Following kicker excitation might have a finite effect...
- * Let's test it by FX !!