Performance of a full EM section of the CMS HGCAL: October 2019 results

Stathes Paganis (NTU) IHEP Seminar @ Beijing, 30 October 2019

Phase II: High Luminosity LHC

□ HL-LHC: expected to deliver 10x the luminosity delivered in Phase I

	LHC	HL-LHC baseline	HL-LHC ultimate*
$\mathcal{L}_{inst}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	2×10^{34}	$5 imes 10^{34}$	$7.5 imes 10^{34}$
$PU(n_{vtxs})$	40-60	140	200

*unexpected at the time of original ECAL TDR.

□ CMS upgrade

- Increased acceptance: tracker ($|\eta|=4$) and muon spectrometer ($|\eta|=2.8$)
- Higher first level trigger (L1) rate: 100kHz → 750kHz

> to maintain comparable trigger performance at higher pileup

- L1 trigger latency $3.4\mu s \rightarrow 12.5\mu s$
 - to provide time for the new track-based hardware trigger

ECAL: from Phase 1 to HL-LHC

Endcaps: complete replacement of current calorimeters to cope with expected radiation flux

✓ HGCAL: High Granularity (Silicon-based) Sampling Calorimeter

Barrel:

✓ ECAL: retain crystals+APD \rightarrow upgraded readout electronics

✓ HCAL: Brass/plastic scintillator + SiPM

ECAL resolution at HL-LHC

Barrel: crystals will retain 30-50% of light output after 3000fb⁻¹
 Endcaps: crystals lose most of the light output.

❑ Constant term for Barrel acceptable.

□ Constant term for Endcaps ~10%, leads to unacceptable energy resolution.

Physics pileup at HL-LHC

Nominal 5E34 luminosity "Ultimate" 7.5E34 luminosity

Pile-up

- 140 200 collisions per bunch crossing >> 3-4x larger than in run 2
 - spread over few centimeters
 - r spread over O(200) ps

EM Calorimetry and Physics

Number of Events

Shopping list for the Endcap region

- □ Good resolution (~1%) at High Energies
 - Low constant term ~0.5%
- Not affected by radiation damage
- □ Improve VBF and VBS analyses
 - Tag forward jets
 - Discriminate quark from gluons
- □ Particle flow
 - PID
 - Excellent jet energy resolution.
 - Background rejection
- □ 50 ps timing resolution for PU mitigation

HL-LHC

- One of the main goals: Discovery of di-Higgs HH production
- Higgs Boson self coupling
- VBF and VBS

CMS High Granularity Calorimeter

Active Elements:

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

Coverage: 1.5 < |η| < 3.0 ~215 tonnes per endcap Full system maintained at -30°C ~620m² Si sensors in ~30000 modules ~6M Si channels, 0.5 or 1cm² cell size ~400m² of scintillators in ~4000 boards ~400k scint. channels, 4-30cm² cell size Power at end of HL-LHC: ~125 kW per endcap

`2.3m CE-E ~2m

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X_0 & ~1.3 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 22 layers, ~8.5 λ

30-Oct-2019

Expected radiation dosage vs R,Z

CMS FLUKA Study v.3.7.9.1

CMS Simulation Preliminary

HGCAL Silicon sensors

Silicon sensors

- For regions with high fluences, HGCAL uses 600m² of silicon
- Hexagonal wafers to maximise used area (-> minimise costs)
- · Followed HEP standard initially 6" wafers. New baseline: 8"

Minimising • Operation at -30° C: Reduce increasing bulk leakage current degradation • Increasing the bias voltage up to -800V to reduce signal loss

8" prototype sensor

HGCAL Silicon sensors

- 8 inch wafers
- Hexagonal sensor geometry
- Planar p-type DC-coupled sensor pads
- Active thickness: 300 µm, 200 µm, 120 µm
 - Advantage of deploying thinner sensors in the higher fluence regions
 - More tolerant to large neutron fluences
 - Reduced cell size in thinner sensors
 - Keeping the capacitance reasonable

HGCAL Project Organization

HGCAL test-beam campaigns

		2016	➡ <u>N. Akchurin et al 2018 JINST 13 P10023</u>
Ν	lain objectives for beam tests:		
	Technological prototyning of the	2017	First beam tests with Skiroc2-CMS ASIC
	detector modules	Time	
First e	First experience with a FE ASIC with	March 2018	@ DESY
	components of the ultimate (HGC)ROC in beam conditions:	Waren 2010	3 modules
	ADC, ToT, ToA	June 2018	@ CERN's SPS full CE_E: 29 modulos
•	Physics performance of the CE-E and CE-H silicon / scintillator parts		
•	Check agreement with simulation	October 2018	@ CERN'S SPS full prototype: 94 modules

H2 beam-line setup

After working close with the CERN SPS beamline experts, we have simulated in detail the full beamline in our Geant4 simulation of the test beam

Micro-channel plate (MCP) photomultiplier tubes were employed to provide treference.

Delay wire chambers (DWCs) monitoring the beam profile in X and Y.

Scintillators for triggering/vetoing.

2018 HGCAL Test-beam

► 28-layer CE-E setup

- +12-layer CE-H-Si setup (94 modules)
- 3 configurations tested
- Environmental control
- Delay Wire chambers
- Threshold Cherenkov counters
- MCPs for timing

· CALI CO - AHCAL

- •e, μ, hadrons up to 300 GeV
- Trigger: 2x scintillators in front of CE-E
- + 1x additional (veto) behind CE-H-Si
- First large-scale test of 0(100) HGCal modules

2018 Configurations

HGCAL is an imaging Calo

HGCAL is an imaging Calo

HGCAL is an imaging Calo

June 2018 run 407 - event 1: "150 GeV e-"

HGCAL Modules

Hexaboard Silicon sensor Kapton sheet

Base plate

8 inch HGCAL Silicon module assembly set-up (At one of the 6 module assembly centers worldwide)

FEE Read-Out Chain

- The front-end electronics
 - Measures and digitizes the charge
 - 10bit ADC (0.2fC 100fC)
 - 12bit TDC (50fC to 10pC)
 - Provides a high precision measurement of the time of arrival of the pulses
 - 10bit TDC with 25ps bins
 - Transmits the digitized data to the back-end electronics
- Similar front end electronics for the readout of the SiPMs

Scintillator Tile Read-Out Chain

Step-by-step pad energy reco

- 1. Amplify, Shape and sample the signal pulse (25nsec rate)
 - Hold 13 HG + 13 LG samples in SCAs
- 2. Readout 13 samplings in per hit and digitize
 - Keep the (time-over-threshold) TOT and (time of arrival) TOA
 - Extract the pad (x,y) info from ROC ID
 - Store all the above in **Calorimeter Hits**
- 3. Subtract pedestals and common noise from every sampling.
- 4. Fit the resulting pulse with a model to extract the amplitude A_0
- 5. Depending on A_0 : Go from HG, LG, TOT \rightarrow pad Energy
 - Energy ~ Amplitude
 - Use muons and/or pions to extract for each pad the Landau MIP MPV (the peak).
 - □ ADCperMIP: ~40 (High Gain), ~5 (Low Gain)
 - Store energy, position and time in **RecHits**

Step 4: fitting the pulse shape

Low gain shaper pulse (left) vs High Gain pulse (right) for 300GeV electrons. The model pulse has been extracted by sampling pulses at 1nsec.

$$S(t) = \begin{cases} A_0 \left[\left(\frac{t - t_0}{\tau} \right)^n - \frac{1}{n+1} \left(\frac{t - t_0}{\tau} \right)^{n+1} \right] e^{-\alpha(t - t_0)/\tau} & \text{if } t > t_0 \\ 0 & \text{otherwise} \end{cases}$$

Dedicated injection runs on test stands with waveforms sampled at 1nsec.

Step 5: use muons to get ADCperMIP

- The hit energy is estimated using a preliminary HG-MIP calibration.
- Hits with more than 0.5 MIP, corresponding to 20-25 HG ADC of the reconstructed waveform amplitude are visualised.
- (A hit-energy-colour bar could be added.)

Figure: Event display of a 200 GeV/c muon traversing the CE-E (28 layers) and CE-H (12 layers) prototypes during the beam test of October 2018. The incoming muon enters the detector from the left-hand side.

Step 5: use muons to get ADCperMIP

Figure: Energy spectrum of reconstructed ADC both in high (top left and right) [...] for two example readout channels due to incident 200 GeV/c muons. MIP- selected spectra are normalized to unity integral. The shown raw spectra are scaled accordingly.

Step 5: use muons to get ADCperMIP

Figure: Per-module distribution of calibrated high gain ADC per MIP for the October 2018 beam tests of the silicon electromagnetic calorimeter prototype. Modules 144 and 145 consist of 200 μ m thick silicon sensors.

Pad energy reconstruction: LG,HG,ToT

30-Oct-2019

Data/MC comparisons

Earlier and Later attempts

Event Selection

- RecHits are required to have Erec > 0.5MIPs (~4 times the pad noise)
- Problematic channels masked off
- A single track was required in DWCs (electron).
- Events with more than 80 RecHits in the hadronic section are rejected.
- Fiducial cut on the impact track (+/- 1cm). This puts the seed within ~4 pads.

EM tails and pion rejection

- Presence of pions in certain runs (like the 150GeV) is obvious.
- Pion removal without biasing the electron reconstruction is based on a cut in the FH

Longitudinal Shower Shapes

Longitudinal Shower Profile

Note that in some layers (like Layer 7 and 10), the response in data is lower than MC

Lateral Shower Profile

Cross-talk noise (pad-to-pad) affects the later shower shapes Correcting the MC with the measured xtalk from injection runs improves the agreement

30-Oct-2019

Applied factor: data and MC

MC raw < Erec> overshoots data by about 8%, constant across the full E-range.

Unofficial:

In MC, the depletion region (active area) equals the sensor thickness (300 or 200mic). In Data, HPK manufacturing has a few micron (20 to 30mic) extra passivation layer on the back side.

Raw energies: data vs MC (MIP)

36

<E_{rec}>: Data/MC fractional

- Data energies in agreement with MC within 1% from 20-300GeV (Gaussian means).
- How about the std deviation $\sigma_{\rm E}$?

$\sigma_{\rm E}/<{\rm E_{rec}}>:$ Data vs MC

- Measured Resolution at the level of Visible energies is nominal.
- Excellent agreement with MC in both stochastic and constant terms.

Calibration

Geant4: Expected Resolution

- Geant 4: provides all losses on an event-by-event basis.
- Save this information in the MC files, and check their impact on performance.
- Device different calibration schemes, regression schemes etc.

dEdx Calibration

This is the same as averaging the number of MIPs seen in the sensors before and after the passive layer

Geant4: Expected Resolution

- Closure test, checking the performance of the dEdx method.
- Also checks the impact of removing/adding energy lost outside the HGCAL
- Adding outside losses from truth improves the c-term by 0.2%

Geant4: Expected Linearity

- Closure test, checking the performance of the dEdx method.
- Also checks the impact of removing/adding energy lost outside the HGCAL
- dEdx weights: overcorrect by 5% to 6%, but maintain linearity to <0.5%

dEdx calibrated, total Energy

- No factors applied here
- MC has been scaled (down) to match the data.
- Tails from incomplete beam-line simulation (work in progress)

Absolute scale: data and MC

After dEdx weights: both Data and MC overshoot the absolute scale by 2% - 2.5%

Energy Resolution

Layer weights can induce c-term

Shower Depth (X0)

Default MC without any miscalibration shows a constant resolution vs depth. Data show a slope, that leads to the worse resolution we observe.

If we induce miscalibrations to MC, we manage to reproduce the data slope.

Energy Linearity

- dE/dx Energy Linearity within ~1% from 20 to 300 GeV
- Expected Linearity from MC is at the level of 0.5%

Energy Uniformity?

We extend our fiducial acceptance to study Energy uniformity.

The c-term receives non-local contributions. (MC predicts 0.4% local c-term)

Taiwan MAC

- Facility commissioned in March 2019
- In April we assembled a full module.
- On-going R&D in tooling, bonding, encapsulating, biasing.

Milestone: completed a 3-year setup/commissioning phase

Module Assembly & Testing

51

- First 6 inch module assembled & bonded in April
- Encapsulation tests/practice
 - Sylgard 184
 - Dispensing by glue dispenser and LabVIEW
 - Syringe handled manually.

• Testing our Modules with LED and Cosmics

- We have made one PCB baseplate mock module
 - PCB baseplate + Aluminum Layer + Bare Hexaboard
 - Practice backside bonding
 - Plan to make a real module

Cosmic trigger settings

Module Assembly: 6-inch

 1.2 mm Cu BasePlate + 70µm gold-Kapton + 400µm Si Sensor + V3 PCB

 Some Problems encountered, but overall the assembly procedure has been smooth

Fibers stuck between PCB and Sensor

Glue, leakage at edge

Alignment can be improved

Summary

We will be building a novel 5D Si-Sampling Calorimeter Test Beam results prove the feasibility of the device

Extra Slides

ECAL APD performance

- ECAL APDs will continue to operate well during HL-LHC
 - Increase in leakage current due to radiation damage
 - APD noise will dominate energy resolution at HL-LHC
- □ Actions Taken:
 - ✓ Lower ECAL operation temperature from 18°C to 6-9°C
 - ✓ To reduce the PU impact and obtain better S/N, the pre-amplifier will have shorter signal pulse length.

PU: Timing Resolution

Phase II Pileup 5x higher than Phase I Vertex ID efficiency drops from 80% to 40%

- Precise ~30ps TOF timing can improve vtx ID
- PbWO₄+APD intrinsic resolution <30ps
- Global CMS effort to provide high precision clock

 $H \rightarrow \gamma \gamma$ mass Resolution under different assumptions

No precise timing + upgraded ECAL timing + new CMS MIP timing layer

ECAL Challenges at Phase II

Phase II goal:

Preserve current ECAL physics performance under HL-LHC and CMS Phase II conditions and demands

Challenges:

- Higher trigger rates and longer latency
- □ Crystal transparency loss due to higher radiation damage

✓ Impacts ECAL energy resolution

10x noise increase from APD leakage currents due to higher radiation damage

✓ Dominates ECAL energy resolution

- □ Reduced vertex ID efficiency due to much higher pileup
 - ✓ Impacts $H \rightarrow \gamma \gamma$ mass resolution
- □ Increased pileup contamination
 - ✓ Impacts ECAL energy resolution

ECAL Upgrade

ECAL upgraded electronics

Pre-amplifier

- Trans Impedance Amp (TIA) architecture optimizes pulse length and sampling rate.
- Matches the requirements for noise, spike rejection, pileup mitigation, and precision timing.
- 2 TeV dynamic range, two gain ranges (G1, G10) with 50, 500 MeV LSB

ADC

- 12 bit, 160MHz sampling frequency
- IP block which will be put in custom chip with rad hard design + data compression in Data TU

FE

Fast rad-hard optical links to stream crystal data off-detector (OD) through CERN lpGBT/VL

BCP

Barrel calorimeter processor, FPGA based \rightarrow Data pipeline, trigger primitives, signal analysis for spike reduction, channel calibration and more 59 30-Oct-2019

Some Hardware

VFE discrete components

FE prototype

CATIA asic analog board

Low voltage regulator prototype

VFE prototypes in 2018 Test Beam

One ECAL tower (5x5=25 channels) equipped with the first prototype of Phase II ASIC amplification chip and 160 MHz commercial ADC

□ Electron beam: 25-250 GeV energy range. Setup kept at 18°C

Trigger

- Granularity increase from tower level (5x5) to crystal level
- □ More sophisticated hardware-level trigger algorithms
- Pileup and background rejection
- ❑ Online signal shape analysis → online reduction of anomalous hadron signals.
 ✓ Target: 1kHz for E > 5GeV

ECAL Electronics Upgrade

ECAL legacy on-detector electronics

ECAL Upgrade on-detector electronics

$Crystal \rightarrow APDs \rightarrow VFE \rightarrow FE$

