

Search for Higgs boson pair production in the WW^(*)WW^(*) decay channel using ATLAS data recorded at $\sqrt{s} = 13 \text{ TeV}$

Shuiting Xin, on behalf of The ATLAS Collaboration

JHEP 05 (2019) 124

1) Motivation and introduction

- ◆ HH production rate could be larger than that predicted in the SM. Such extension includes
 - \triangleright A modification to the SM Higgs self-coupling, λ_{HHH} .
 - > The existence of a new heavy resonance which decays into a pair of Higgs bosons.
- ◆ Previous searches were performed for resonant and non-resonant HH production using various channels, such as bbyy, bbbb, bbWW, bb $\tau\tau$ and WWyy, with data from the ATLAS and CMS experiments.
- lacktriangle First di-higgs search with WW*WW* channel, also the first search for X \rightarrow SS model.

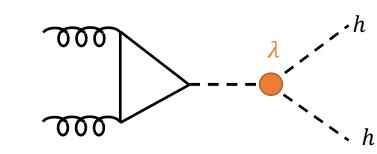


Fig.1SM non-resonant $pp \rightarrow HH$ process($\sigma = 33.41 fb$)

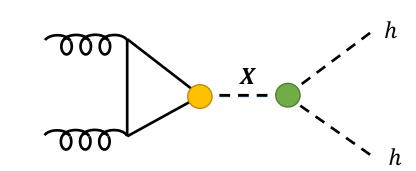
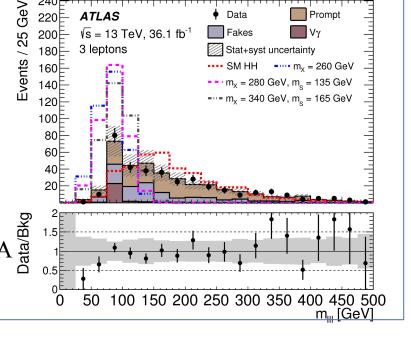


Fig.2 BSM resonant and $X \rightarrow SS$ process

◆ This work investigates HH production through three different processes.

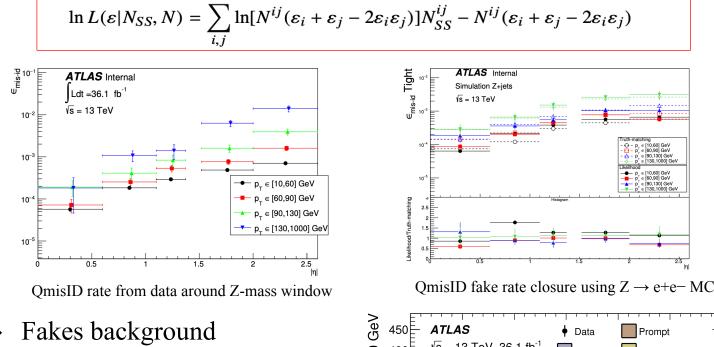

- > SM HH production(non-resonant HH, Fig.1)
- > BSM processes(Fig.2)inspired by an extended Higgs sector, in which a neutral heavy Higgs boson, X, decays either directly into two SM Higgs bosons (resonant HH) or into a pair of new scalar bosons, $S(X \rightarrow SS)$.
- ◆ The analysis is divided into three independent channels depending on the number of light leptons(e and u) from leptonic decay of W bosons, and then statistically combined to give the final result.

2)Common Analysis Strategy

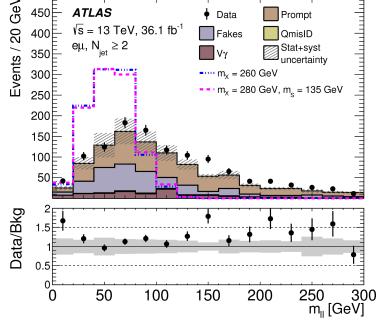
- ◆ Relatively high decay branching ratio, use leptons final state to get cleaner signature.
- lacktriangle Data and MC samples, full 2015-2016 data(36.1 fb^{-1}).
- ◆ Cut and count analysis
- ◆ Individual channels
 - Two(same sign)leptons
 - ee, $e\mu$, $\mu\mu$, missing energy, at least two jets Three leptons
 - Total charge ± 1 , missing energy, at least two jets > Four leptons
 - Total charrge 0, no jet requirement.
- ◆ Fake leptons estimate with a fake factor method for all channels
- lacktriangle Optimized selections based on s/\sqrt{b} using TMVA CutsSA for each mass point (21 and 31 channel).
- ◆ b-jet veto to reject top quark backgrounds and stay orthogonal to most other decay channels.

3 lepton channel

- **♦** Selection
 - > Six flavour channels are split into two categories: OSFOS(μee , $e\mu\mu$), 1/2SFOS(eee, $ee\mu$, $\mu\mu e$, $\mu\mu\mu$)
- ♦ Background modeling > From simulation
 - Prompt leptons(WZ,ZZ,tV,ttV/H
 - and VVV)
 - > From data-driven • Fakes due to Zjets,ttbar
- Signal Region optimization Four variables used in TMVA CutsSA Francisco



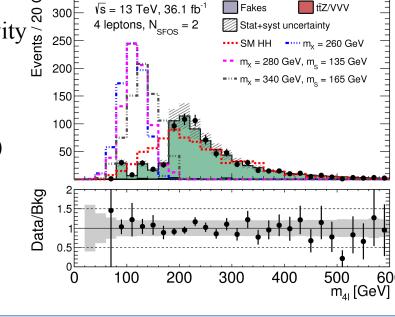
2 lepton(same sign) channel


- ◆ Background modeling
 - > From simulation
 - Prompt leptons(VV,VVV,tV, ttV and ttH)
 - ➤ From data-driven Charge mis-ID(QmisID)(e.g Z+jets)

Fakes due to ttbar and W+jets

- **QmisID** background
 - \triangleright Tight electrons Charge mis-ID rate ϵ is used measured with a likelihood technique around the Z-mass window

- - The fake factor is defined based on "tight" and "antitight" lepton. $\theta_{\ell} = \frac{N_{\ell\ell}}{N_{\ell\ell}}$
 - The amount of fake background is estimated with the control region and the fake factor.

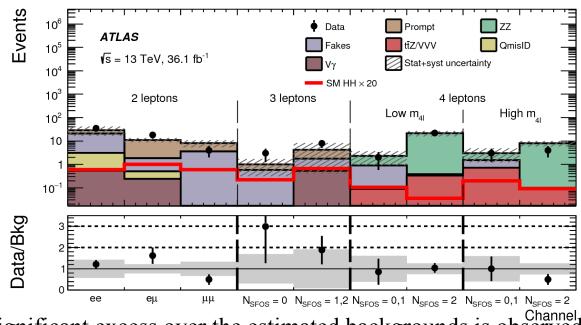

- ◆ Signal Region optimization
- Four variables using TMVA CutsSA: m_{ll} , ΔR_{l1j} , ΔR_{l2j} , m_{l1jj}

4 lepton channel

- Selection
- Six flavour channels split into two categories: OSFOS: $e\mu e\mu$, $e\mu$ ee, $\mu\mu$ e μ , 1/2SFOS:

eeee, μμμμ and eeμμ.

- Select dilepton mass to reject fakes
- Two M41 regions to improve sensitivity $\frac{3}{20}$ 250
- Background modeling
- > From simulation
- ZZ,ttZ,VVV(qq/gg->ZZ dominated) > From data-driven
- Fakes due to WZ,Zjets,tV.

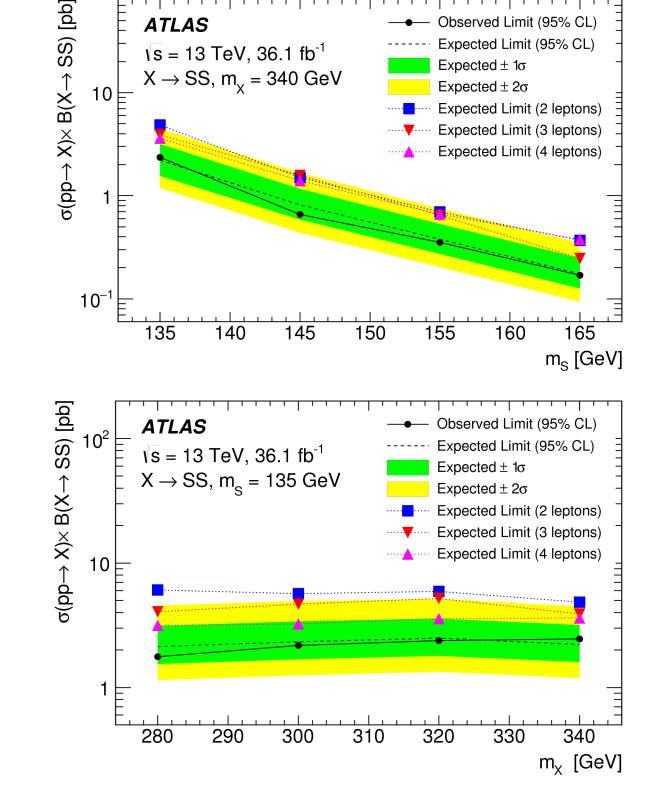


3) Systematics

- Dominating effects come from JER/JES(45%) and fake lepton background estimation(42%) for the non-resonant production search.
- ◆ Backgrounds uncertainties include prompt lepton, fake lepton, mischarge ID backgrounds estimation.
- ◆ Theoretical uncertainties include signal/backgrounds cross sections, PDF, QCD scale and parton shower modelling.
- Other small uncertainties include lepton measurements, pile-up modelling, btagging, ET miss modelling.
- Luminosity uncertainty.
- ◆ The relative impact of all systematic uncertainties are 71% (60%–79%) for the non-resonant (resonant) production searches. The statistical uncertainties are 71% (61%–80%) for the non-resonant (resonant) production searches.

4)Results

Results for non-resonant HH searches



- No significant excess over the estimated backgrounds is observed in data.
- Analysis separated into 3 channels and further split into 9 categories. Combined observed (expected) limits on non-resonant HH cross section at
- 95% confidence level is 5.3 (3.8) pb, \sim 160 (120) X SM cross section.

Results for resonant HH searches $\sigma(pp {\rightarrow} X) \!\! \times B(X \!\! \to HH) \, [pb]$ **ATLAS** Observed Limit (95% CL) Expected Limit (95% CL) $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Expected $\pm 1\sigma$ $X \rightarrow HH$ Expected $\pm 2\sigma$ 10² Expected Limit (2 leptons) Expected Limit (3 leptons) Expected Limit (4 leptons) 300 350 400 250 450 500 m_x [GeV]

Observed (expected) limits range from 8.5 (9.5) pb to 2.6 (2.5) pb.

Results for $X \rightarrow SS$ searches

Observed (expected) limits range from 2.4 (2.4) pb to 0.16 (0.17) pb.