Performance requirement and Physics Potential studies - TDR phase

Manqi Ruan

background

 The CEPC CDR clearly quantifies the physics potential in Higgs via full simulation

 The physics potential in EW, Flavor, and QCD can be better quantified – especially under the context that a trillion clean Z event will be recorded

 Those measurements will make requirement on the detector performance: emphasize more on particle identification, intrinsic sub-detector resolution (momentum and energy), and on particle separation...

The cepc cdr detectors

- Baseline Fulfills the physics requirement on Higgs/EW measurement, but
 - Ideal & difficult to construct in its tracking
 - Massive in its calorimeter readout/cooling
 - Has limited ECAL intrinsic resolution

Need also be addressed in the TDR studies

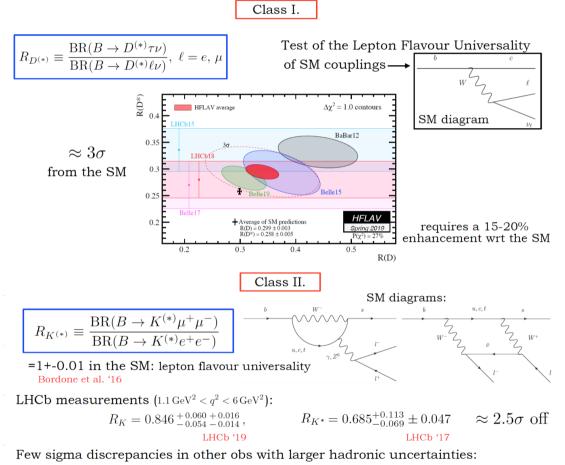

Huge interests in general software framework development

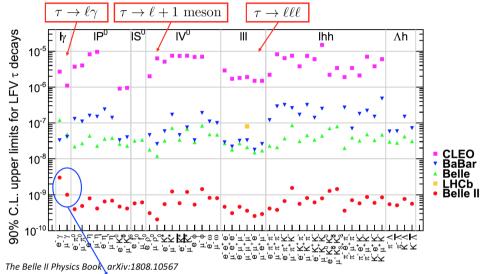
Coming Hongkong WSs

 Many thanks to Hongkong IAS: providing us a nice occasion to discuss those questions

 2020.1.16 - 17, detector WS: discuss the physics requirement & software

 2020.1.18 - 19, CEPC Physics WS: discuss the CEPC physics report & physics benchmark channels Recent Highlight – white paper preparation


- To promote the physics study at TDR & to converge to the Physics White Papers by the end of 2020
- Physics white papers:
 - Physics handbooks for new comers: PostDoc/Student
 - Official references for the physics potential
 - Guideline for future detector design/optimization



75 registrant + several visitors; ~ 50 talks. Covers Physics, Pheno, and Performance studies Multiple Benchmarks are proposed, related performance/analysis are presented Supported by IHEP CFHEP & PKU

16/10/19

Multiple physics benchmarks proposed

Radiative modes affected by ISR photon background: Expected sensitivity too optimistic?

Z exotic LFV decays...

Performance/simulation study starts

Angular observables in Some $b \to s \mu^+ \mu^-$ BRs

 $B \to K^* \mu^+ \mu^-$

16/10/19

Activities since

- Benchmark analysis on physics
 - Higgs:
 - H->di muon/di photon
 - H->multi jets
 - Flavor:
 - Bc->tau nu
 - Tau exotic decay
 - EW: TGC
- Performance
 - Fast simulation & PFA oriented detector optimization
 - Jet lepton id performance

Hope some result will be mature enough, To discussed at the Hongkong WS

backup

CEPC Flavor Physics

70 OVERVIEW OF THE PHYSICS CASE FOR CEPC

Particle	Tera-Z	Belle II	LHCb
b hadrons			
B^+	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	3×10^{13}
B^0	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	3×10^{13}
B_s	2×10^{10}	$3 \times 10^8 \ \ (5\mathrm{ab^{-1}}\ \mathrm{on}\ \Upsilon(5S))$	8×10^{12}
b baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	2×10^{11}		
D^+	6×10^{10}		
D_s^+	3×10^{10}		
Λ_c^+	2×10^{10}		
$ au^+$	3×10^{10}	$5\times 10^{10}~(50\mathrm{ab^{-1}}$ on $\Upsilon(4S))$	

Table 2.4: Collection of expected number of particles produced at a tera-Z factory from 10^{12} Z-boson decays. We have used the hadronization fractions (neglecting p_T dependencies) from Refs. [431, 432] (see also Ref. [433]). For the decays relevant to this study we also show the corresponding number of particles produced by the full $50 \, \text{ab}^{-1}$ on $\Upsilon(4S)$ and $5 \, \text{ab}^{-1}$ on $\Upsilon(5S)$ runs at Belle II [430], as well as the numbers of b hadrons at LHCb with $50 \, \text{fb}^{-1}$ (using the number of $b\bar{b}$ pairs within the LHCb detector acceptance from [435] and the hadronization fractions from [431]).

Comparative advantages

vs LHCb:

Reconstruction of neutral particles

Reconstruction of jet charge

. . .

vs Belle II:

Higher Boost Large phase space

Challenges:

Finding the decay products in Jets! (similar to LHCb)...