Lepton Identification in Jets Dan YU

Single Lepton Identification

- LICH uses TMVA methods to summarize 24 input variables into two likelihoods, corresponding to electrons and muons.
- The efficiency for electron and muon is higher than 99.5% (E>2 GeV). Pion efficiency ~ 98%.

Performance in jets

• The performance for lepton in jets degrades comparing to the single particle results because of because of the high statistics of background and the cluster overlap.

	<2GeV	2GeV-4GeV	4GeV-10GeV	>10GeV
eff_e(%)	87.51	97.75	97.62	97.04
eff_mu(%)	33.17	72.63	78.47	95.69
pur_e(%)	80.97	80.79	96.07	96.91
pur_mu(%)	20.85	29.32	79.04	94.42
N_e	263449	84782	66514	30528
N_mu	128336	57777	60810	34178
N_pi	3888694	1436396	852860	112739

- Sample: Zpole->bb
- High Energy:
 - easy to separate
- Low Energy:
 - muons mixed with pions
 - large statistics of pions
 - What is wrong with pion (2GeV 4GeV)?

Clustering Performance

- Use clustering efficiency (correct collected hits/particle hits) and purity (correct collected hits/cluster hits) to characterize clustering performance
- We look into "nice" clusters (efficiency*purity>0.92) and "poor" clusters (efficiency*purity<0.44)

Clustering Categories

 Comparison of lepton id efficiency*purity for "nice"/"poor" clusters and the extrapolated performance using single particle results and the statistics (up limit to be achieved)

Angular Dependence

low energy pions mixed with muons: better on endcap

Pion (2GeV<En<4GeV, cosTheta<0.8)

Pion (2GeV<En<4GeV, cosTheta>0.8)

The "best" performance

• "nice" clustering + small angle to the z-axis

