NEUTRINO FLOOR IN DM DIRECT DETECTIONS

WEI CHAO BEIJING NORMAL UNIVERSITY

2019.11.22@composite2019, SYSU

We study impacts of non-standard neutrino interactions to the
neutrino floor

NSI	Enhancement	Estimated values
Vector	\checkmark	~several times
Axial-vector	×	×
Tensor	×	×
Scalar	\checkmark	~several times
Pseudo-scalar	\checkmark	~30%

Wei Chao, J. Zhang, X. Wang and X. Zhang, JCAP1908,010

Evidence of DM

DM incidents, 1907.06674

Death by Dark Matter

Jagjit Singh Sidhu¹, Robert J. Scherrer², Glenn Starkman¹ Physics Department/CERCA/ISO Case Western Reserve University Cleveland, Ohio 44106-7079, USA and ²Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235

Macroscopic dark matter refers to a variety of dark matter candidates that would be expected to (elastically) scatter off of ordinary matter with a large geometric cross-section. A wide range of macro masses M_X and cross-sections σ_X remain unprobed. We show that over a wide region within the unexplored parameter space, collisions of a macro with a human body would result in serious injury or death. We use the absence of such unexplained impacts with a well-monitored subset of the human population to exclude a region bounded by $\sigma_X > 10^{-8} - 10^{-7}$ cm² and $M_X < 50$ kg. Our results open a new window on dark matter: the human body as a dark matter detector.

What is dark matter

We do not exactly know!

W boson

neutrino

neutrino

10-39

Black Hole Remnant

wimpzilla

 $10^{-33}10^{-30}10^{-27}10^{-24}10^{-21}10^{-18}10^{-15}10^{-12}10^{-9}10^{-6}10^{-3}10^{0}10^{3}10^{6}10^{9}10^{12}10^{15}10^{18}10^{18}10^{15}10^{18}10^{15}10^{18}10^{15}10^{18}10^{15}10^{18}10^{15}10^{18}10^{15}10^{18}10^{15}10^{18}10^$ mass (GeV)

Ways of probing WIMP

Detecting technologies

DM direct detections

Where to go for Direct detections

Why neutrinos relevant?

Sterile neutrino can be DM candidate There might be neutrino portals to the DM Their experiments can detect both neutrino&DM

Two relevant issues

Precision calculations of the direct detection cross section.

Understanding the neutrino floor.
Neutrino flux
Neutrino interactions

Neutrino flux from the universe

Sun as the source of neutrinos

Supernova and atmosphere neutrino

Neutrino flux on the earth

Neutrino-nuclei scattering

Charged currents coupling to electroweak gauge boson

Neutral currents coupling to electroweak gauge boson

$$\sum_{\substack{\alpha=e,\mu,\tau\\\alpha=e,\mu,\tau}} W_{\mu}^{+}(\bar{\nu}_{\alpha}\gamma^{\mu}\alpha) + h.c.$$

Coherent neutrino-nucleus scattering in the SM

Number of expected events

$$\frac{d\sigma_{\nu}}{dE_R} = \frac{G_F^2}{4\pi} Q_{\nu N}^2 m_N \left(1 - \frac{m_N E_R}{2E_{\nu}^2}\right) F^2(E_R)$$

Weak hyper-charge of target nucleus

Nuclear form factor

$$N = \frac{\varepsilon}{m_N} \int_{E_T}^{E_{max}} dE_R \int dE_\nu \frac{d\phi_\nu}{dE_\nu} \frac{d\sigma_\nu}{dE_R}$$

Neutrino floor in the SM

Neutrino floor in the SM

Neutrino floor in the SM

Billard, et al., PRD89,023524

Non-standard Neutrino interactions

19

Neutrino oscillations

Neutral current NSI: Propagation of neutrinos in matter

Charged current NSI: Production and detection

$$i\frac{d}{dx}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = H\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix}$$

$$H = H_{\rm vac} + H_{\rm matt}$$

$$H_{\text{vac}} = U \text{Diag} \left(\frac{m_1^2}{2E}, \frac{m_2^2}{2E}, \frac{m_3^2}{2E} \right) U^{\dagger}$$
$$H_{\text{matt}} = \sqrt{2} G_F N_e \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$H_{\text{matt}} = \sqrt{2}G_F N_e \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F \sum_{f=e,u,d} \begin{pmatrix} \varepsilon_{ee}^f & \varepsilon_{e\mu}^f & \varepsilon_{e\tau}^f \\ \varepsilon_{\mu e}^f & \varepsilon_{\mu\mu}^f & \varepsilon_{\mu\tau}^f \\ \varepsilon_{\tau e}^f & \varepsilon_{\tau\mu}^f & \varepsilon_{\tau\tau}^f \end{pmatrix}$$

 $-0.008 < \varepsilon_{ee}^{uV} < 0.618 \qquad -0.111 < \varepsilon_{\mu\mu}^{uV} < 0.402$ $-0.012 < \varepsilon_{ee}^{dV} < 0.361 \qquad -0.103 < \varepsilon_{\mu\mu}^{dV} < 0.361$ Altmannshofer, et al., 1812.02778

20

CONHERENT

GOAL:Measure N² dependence of CEvNS process

Beam ON coincidence window	547 counts
Anticoincidence window	405 counts
Beam-on bg: prompt beam neutrons	7.0 ± 1.7
Beam-on bg: NINs (neglected)	4.0 ± 1.3
Signal counts, single-bin counting	136 ± 31
Signal counts, 2D likelihood fit	134 ± 22
Predicted SM signal counts	173 ± 48

Confirm CEvNS at 6.7 sigma

CHARM

$$R_e = \frac{\sigma(\nu_e N \to \nu_e X) + \sigma(\bar{\nu}_e N \to \bar{\nu}_e X)}{\sigma(\nu_e N \to e^- X) + \sigma(\bar{\nu}_e N \to e^+ X)} = 0.406 \pm 0.140$$

CHARM, PLB180,303

$$R_{\mu} = \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)} = 0.3093 \pm 0.0031$$

CHARM, Z. Phys. C36,611

 $R_e^{\rm SM} = 0.3221 \pm 0.0006$

 $R_{\nu_{\mu}}^{\rm SM} = 0.3156 \pm 0.0006$

Falkowski, et al., 1706.03783

$$R_e^{\rm NSI} = R_e^{\rm SM} + \frac{\Delta \sigma_{\rm NSI}}{\sigma_{\rm CC}}$$

$$R_{\nu_{\mu}}^{\rm NSI} = R_{\nu_{\mu}}^{\rm SM} + \frac{\Delta \sigma_{\rm NSI}}{\sigma_{\rm CC}^{\nu_{\mu}}}$$

Combined constraints

Couplings	Constraints	Couplings	Constraints	Couplings	Constraints	Couplings	Constraints
$\zeta_{u,S}^{eX}$	0.051	$\zeta^{\mu X}_{u,S}$	0.035	$\zeta_{u,P}^{eX}$	4.863	$\zeta^{\mu X}_{u,P}$	0.484
$\zeta_{d,S}^{eX}$	0.051	$\zeta^{\mu X}_{d,S}$	0.034	$\zeta_{d,P}^{eX}$	6.256	$\zeta^{\mu X}_{d,P}$	0.686
$\zeta^{eX}_{s,S}$	0.866	$\zeta^{\mu X}_{s,S}$	0.579	$\zeta_{s,P}^{eX}$	11.87	$\zeta^{\mu X}_{s,P}$	1.603
$\zeta_{u,T}^{eX}$	0.632	$\zeta^{\mu X}_{u,T}$	0.064	$\zeta_{u,A}^{eX}$	0.996	$\zeta^{\mu X}_{u,A}$	0.178
$\zeta_{d,T}^{eX}$	0.866	$\zeta^{\mu X}_{d,T}$	0.093	$\zeta_{d,A}^{eX}$	0.996	$\zeta^{\mu X}_{d,A}$	0.250
$\zeta_{s,T}^{eX}$	1.680	$\zeta^{\mu X}_{s,T}$	0.215	$\zeta_{s,A}^{eX}$	2.123	$\zeta^{\mu X}_{s,A}$	0.500
$\zeta^{eX}_{u,V}$	0.123	$\zeta^{\mu X}_{u,V}$	0.084				
$\zeta_{d,V}^{eX}$	0.112	$\zeta^{\mu X}_{d,V}$	0.072				
$\zeta^{eX}_{s,V}$	2.123	$\zeta^{\mu X}_{s,V}$	0.566				

Neutrino floor with exotic neutrino interactions

Quark level	Nucleon level	Matching conditions
$\frac{G_F}{\sqrt{2}}\zeta_{q,S}\bar{\nu}_{\alpha}P_L\nu_{\beta}\bar{q}q$	$\frac{G_F}{\sqrt{2}}\zeta_{N,S}\bar{\nu}_{\alpha}P_L\nu_{\beta}\bar{N}N$	$\zeta_{N,S} = \sum_{q=u,d} \zeta_{q,S} rac{m_N}{m_q} f_{T_q}^N$
$rac{G_F}{\sqrt{2}}\zeta_{q,P}ar{ u}_{lpha}P_L u_{eta}ar{q}i\gamma^5q$	$\frac{G_F}{\sqrt{2}}\zeta_{N,P}\bar{\nu}_{\alpha}P_L\nu_{\beta}\bar{N}i\gamma^5N$	$\zeta_{N,P} = \sum_{q=u,d} \zeta_{q,P} \frac{m_N}{m_q} \left(1 - \frac{\bar{m}}{m_q}\right) \Delta_q^N$
$\frac{G_F}{\sqrt{2}}\zeta_{q,V}\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}\bar{q}\gamma^{\mu}q$	$\frac{G_F}{\sqrt{2}}\zeta_{N,V}\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}\bar{N}\gamma^{\mu}N$	$\zeta_{p,V} = 2\zeta_{u,V} + \zeta_{d,V}; \zeta_{n,V} = \zeta_{u,V} + 2\zeta_{d,V}$
$\frac{G_F}{\sqrt{2}}\zeta_{q,A}\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}\bar{q}\gamma^{\mu}\gamma^5q$	$\frac{G_F}{\sqrt{2}}\zeta_{N,A}\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}\bar{N}\gamma^{\mu}\gamma^5N$	$\zeta_{N,A} = \sum_q \zeta_{q,A} \Delta_q^N$
$\frac{G_F}{\sqrt{2}}\zeta_{q,T}\bar{\nu}_{\alpha}\sigma_{\mu\nu}P_L\nu_{\beta}\bar{q}\sigma^{\mu\nu}q$	$\left \frac{G_F}{\sqrt{2}} \zeta_{N,T} \bar{\nu}_{\alpha} \sigma_{\mu\nu} P_L \nu_{\beta} \bar{N} \sigma^{\mu\nu} N \right.$	$\zeta_{N,T} = \sum_{q} \zeta_{q,T} \delta_q^N $

Numerical results-1: vector interactions with Xe131

Numerical results-1: vector interactions with X131

Numerical results-2: axial-vector interactions with Xe131

Numerical results-2: axial-vector interactions with Xe131

Numerical results-3: scalar interactions with Xe131

Numerical results-3: scalar interactions with X131

Numerical results-4: pseudo-scalar interactions with Xe131

Numerical results-4: pseudo-scalar interactions with X131

Numerical results-5: tensor interactions with Xe131

Numerical results-5: tensor interactions with X131

Numerical results-6: vector interactions with Ge72

Numerical results-6: scalar interactions with Ge72

Conclusions

Impact of non-standard neutrino interactions to the neutrino floor was studied

Thanks

Advertisement

⋒ 大王角灯塔 第三届北师大暗物质研讨会 检金顶 平顶立交 (1) 淇澳岛 麻峰坳顶 Search 6-9 December 2019 🕢 东澳古庙 \$9919 田心森林公园 Overview 暗物质是具有确凿实验证据的超出标准模型的新物理,也是当前高能物理实验和理论研究的前沿热点课 Scientific Programme 题。近年来,暗物质的实验研究不断取得突破性进展,暗物质-核子弹性散射截面的排除线精度不断提 高、COHERENT实验观测到中微子-核子相干弹性散射(暗物质直接探测的主要背景)、XENON1T实 Timetable 验观测到双β衰变。此外,WIMP的直接探测也进入了关键时期,各种新的针对轴子和Sub-GeV暗物质 员 积尼告斯球场 Registration 的直接探测思想不断涌现。这些都为中国的暗物质研究提供了机遇和挑战。 X588 日酒店 L Registration Form 为了促进国内高能物理界学术交流、推动我国暗物质理论和实验研究的发展、寻求高能物理与其他学科 Participant List 领域交叉的可能性,北京师范大学和北京大学高能物理研究中心将于2019年12月07日至09日在北京师 范大学珠海校区联合举办第三届北师大暗物质研讨会。会议主题将针对所有暗物质相关的课题。 0 诚挚邀请您参加此次会议。 滨海公园 会议地点:北师大珠海校区,珠海市 \Lambda 飞天凤 注册费: 1200元(老师和博士后),600元(学生) 注册截止: 2019年10月31日。 主办单位: 北京师范大学、北京大学高能物理研究中心 指导委员会:曹庆宏、季向东、岳骞、张丰收、周宇峰、涂展春 组织委员会:晁伟、黄文宏、刘晓辉、刘言东、王力、杨硕尧 E工业区 会务联系人: 杨硕尧(北京师范大学): yangshuoyao@bnu.edu.cn 港球课大桥 Starts Dec 6, 2019 08:00 Ends Dec 9, 2019 18:00 \bigcirc 鸡龙山

坦洲14创益

文化园

珠海大道

前山立交桥

https://indico.ihep.ac.cn/event/10365/

Thanks

G94

九洲岛