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OnAug 17, 2017, LIGO-Virgo
detected GW from BNS:
Multi-messenger astronomy era
4 astronomical discoveries:
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! GWs can serve as cosmic “standard sirens”:

GW’s waveform carries information of 
luminosity distance

! Schutz 1986, Holz & Hughes 2005
! BNS merger: GW & EMW 
! Multi-messenger: study cosmology
! Hubble’s law: z (small), d à H0
! Independent H0 measurement
! Advantage: avoid using cosmic distance ladder
! One data: error still large (around 15%)

Inclination angles near 180 degree (cos l=-1)
indicate that the orbital angular momentum
is antiparallel to the direction from the
source to the detector.

Hubble flow velocity measurement (peculiar velocity), 
distance measurement (parameter degeneracy, 
instrument calibration, et al.)
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! The Hubble constant: first cosmological parameter, a century measurement
! Tension: between early-universe and late-universe measurements
! One of the most important problems in current cosmology
! Cosmology at a crossroads
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∼0.7%

∼2%
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! The H0 tension: new physics beyond standard model?
! In some extended models, new parameters positively-correlate or anti-correlate
with H0

! Tightly constrained by current observations
! Can the H0 tension be resolved?
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! Single-parameter & multi-
parameter extensions

! CMB+BAO+SN+H0 (for
obtaining a larger H0)

! ForΛCDM, still 3σ tension
! HDE & HDE + sterile

neutrino, can effectively
alleviate tension (1.67σ and
1.11σ), but they are excluded
by observations

! ΛCDM + Neff�looks the
best one, 1.87σ, and it is
favored by observations
(ΔAIC=-0.242), but if H0
data is not used, then 2.66σ
tension

! In addition, increasing Neff
can increase σ8 (another
tension)

! Conclusion: among these
extensions, no one can truly
resolve the tension
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! Need a third party to make an arbitration
! GW standard sirens: pure distance

measurement, avoiding complex astrophysical
distance ladder and poorly understood
calibration process

! Self-calibration (directly calibrated by theory)
! Currently, only one data, about 15% error
! H0: 15%/ !, N is the event number of BNS

mergers detected by LIGO-Virgo
! N=50, about 2% error
! + KAGRA& LIGO-India: 13%/ !
! Future 3rd generation ground-based GW

detectors: CE & ET



! 2% in 5 years, and 1% in 10 years
! In 2023, 50 events, 2%; In 2026, 100 events, about 1.3%
! BBH, no EM counterpart, but statistical method can be used

Projected number of BNS detections and
corresponding fractional error for the standard
siren H0 measurement

Projected fractional error for the standard siren H0
measurement for BNSs and BBHs for future GW
detector network
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l 3rd generation
ground-based

l 100-200 meters
underground

l Armlength 10 km
l 3 detectors
l About 1000
standard sirens in
10 years
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It is expected that standard sirens would be developed into a powerful cosmological probe in the future
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X. N. Zhang, L. F. Wang, J. F. Zhang & X. Zhang, Phys. Rev. D 99 (2019) 063510 [arXiv: 1804.08379]

! Standard sirens: H0 good (ΛCDM 0.3%, wCDM 0.5%), other parameters not good
! But self-calibration, absolute distance measurement, can break parameter degeneracies,

rather meaningful for parameter measurements
! wCDM: in H0-Ωmplane, roughly orthogonal
! w also not good (12%) by GW, and 4% by current CBS; degeneracy broken: w 2% by

combined data
! GW combined with future survey projects, can elucidate the nature of DE?
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J. F. Zhang, M. Zhang, S. J. Jin, J. Z. Qi & X. Zhang, JCAP 1909 (2019) 068 [arXiv:1907.03238]
J. F. Zhang, H. Y. Dong, J. Z. Qi & X. Zhang, arXiv:1906.07504
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! Frequency range: 10-4 Hz - 1 Hz
! Supermassive black hole (galaxy center) coalescence
! Extreme mass ratio inspiral (EMRI)
! China’s projects: Taiji & TianQin
! Merger events: uncertainty large
! SMBH formation and growth: 3 models

Forecast for TianQin (standard sirens)

L. F. Wang, Z. W. Zhao, J. F. Zhang & X. Zhang, 1907.01838

Space-based GW detectors
! Frequency range: 10-4 Hz - 1 Hz
! Supermassive black hole (galaxy center) coalescence
! Extreme mass ratio inspiral (EMRI)
! China’s projects: Taiji & TianQin
! Merger events: uncertainty large
! SMBH formation and growth: 3 models

Forecast for TianQin (standard sirens)

L. F. Wang, Z. W. Zhao, J. F. Zhang & X. Zhang, 1907.01838
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Taiji project, W. R. Hu & Y. L. Wu, Natl. Sci. Rev. 4 (2017) 685
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!CDM

wCDM

w0waCDM

! GW space observation’s
constraint capability for
cosmological parameters is
weak (sources rare, WL)

! Constraints on DE still
meaningful

! Standard sirens
! Parameter degeneracies

broken
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! Have known some basic facts about neutrinos
! Some parameters have been precisely measured
! Neutrino mass ordering?
! Absolute masses of neutrinos?
! Particle physics experiments are difficult to

measure the neutrino masses
! Cosmology is important for neutrino mass

measurement



Constraints on absolute neutrino masses
§ Tritium β decays (90% CL) 

!" < $.$ &' (KATRIN, first result 2019)
§ Neutrinoless double-β decays (90% CL)
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§ Cosmological observations (95% CL)
0!1 < (. $/ &' (Planck) 
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Taken from Shun Zhou
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RR model of Dirian et al. (2016); these models are not discussed
here.

Overall, the EFT sub-class of non-minimally coupled k-
essence models considered here is not preferred by current data.
Without using CMB and galaxy WL lensing, Planck gives a
moderate preference for models that predict more lensing com-
pared to ⇤CDM (as found in our investigation of the (µ, ⌘)
parameterization). However, combining Planck with CMB and
DES WL lensing measurements disfavours high lensing ampli-
tudes and pulls the parameters towards ⇤CDM.

7.4.4. General remarks

Planck alone provides relatively weak constraints on dark energy
and modified gravity, but Planck does constrain other cosmolog-
ical parameters extremely well. By combining Planck with ex-
ternal data we then obtain tight constraints on these models. We
find no strong evidence for deviations from ⇤CDM, either at the
background level or when allowing for changes to the perturba-
tions. At the background level, ⇤CDM is close to the best fit.
In the simple µ–⌘ and EFT parameterizations of perturbation-
level deviations from GR, we do find better fits to the Planck

TT,TE,EE+lowE data compared to ⇤CDM, but this is largely
associated with the preference in the CMB power spectra for
higher lensing amplitudes (as discussed in Sect. 6.2), rather than
a distinctive preference for modified gravity. Adding weak lens-
ing data disfavours the large lensing amplitudes and our results
are consistent with ⇤CDM to within 1�. Since neutrino masses
are in general degenerate with DE and MG parameters, it is also
worth testing the impact of varying neutrino masses versus fix-
ing them to our base-⇤CDM value of m⌫ = 0.06 eV. We find
similar trends, with slightly larger posteriors when varying the
neutrino mass.

7.5. Neutrinos and extra relativistic species

7.5.1. Neutrino masses

The Planck base-⇤CDM model assumes a normal mass hierar-
chy with the minimal mass

P
m⌫ = 0.06 eV allowed by neutrino

flavour oscillation experiments. However, current observations
are consistent with many neutrino mass models, and there are
no compelling theoretical reasons to strongly prefer any one of
them. Since the masses are already known to be non-zero, allow-
ing for larger

P
m⌫ is one of the most well-motivated extensions

of the base model. The normal hierarchy, in which the lowest two
mass eigenstates have the smallest mass splitting, can give anyP

m⌫ >⇠ 0.06 eV; an inverted hierarchy, in which the two most
massive eigenstates have the smallest mass separation, requiresP

m⌫ >⇠ 0.1 eV. A constraint that
P

m⌫ < 0.1 eV would therefore
rule out the inverted hierarchy. For a review of neutrino physics
and the impact on cosmology see e.g., Lesgourgues et al. (2013).

As in PCP13 and PCP15, we quote constraints assuming
three species of neutrino with degenerate mass, a Fermi-Dirac
distribution, and zero chemical potential. At Planck sensitivity
the small mass splittings can be neglected to good accuracy (see
e.g., Lesgourgues & Pastor 2006). Neutrinos that become non-
relativistic around recombination produce distinctive signals in
the CMB power spectra, which Planck and other experiments
have already ruled out. If the neutrino mass is low enough that
they became non-relativistic after recombination (m⌫ ⌧ 1 eV),
the main e↵ect on the CMB power spectra is a change in the
angular diameter distance that is degenerate with decreasing H0.
The Planck data then mainly constrain lower masses via the lens-

ing power spectrum and the impact of lensing on the CMB power
spectra. Since the CMB power spectra prefer slightly more lens-
ing than in the base-⇤CDM model, and neutrino mass can only
suppress the power, we obtain somewhat stronger constraints
than might be expected in typical realizations of a minimal-mass
neutrino model.

In PCP15 no preference for higher neutrino masses was
found, but a tail to high neutrino masses was still allowed, with
relatively high primordial amplitudes As combining with high
neutrino mass to give acceptable lensing power. The tighter
2018 constraint on the optical depth from polarization at low
multipoles restricts the primordial As to be smaller, to match
the same observed high-` power (C` / Ase

�2⌧); this reduces
the parameter space with larger neutrino masses, giving tighter
constraints on the mass. With only temperature information at
high `, the 95 % CL upper bound moved from 0.72 eV (PCP15
TT+lowP) to 0.59 eV (using the SimLow polarization likelihood
of Planck Collaboration Int. XLVI 2016, at low `). This now fur-
ther tightens to

X
m⌫ < 0.54 eV (95 %, Planck TT+lowE). (58a)

Adding high-` polarization further restricts residual parameter
degeneracies, and the limit improves to

X
m⌫ < 0.26 eV (95 %, Planck TT,TE,EE+lowE). (58b)

Although the high-` TT spectrum prefers more lensing than in
base ⇤CDM, the lensing reconstruction is very consistent with
expected amplitudes. In PCP15, the 2015 lensing likelihood
weakened joint neutrino mass constraints because it preferred
substantially less lensing than the temperature power spectrum.
The 2018 lensing construction gives a slightly (1–2 %) higher
lensing power spectrum amplitude than in 2015, which, com-
bined with the decrease in the range of higher lensing ampli-
tudes allowed by the new TT+lowE likelihood, means that the
constraints are more consistent. Adding lensing therefore now
slightly tightens the constraints to

X
m⌫ < 0.44 eV (95 %, TT+lowE+lensing), (59a)

X
m⌫ < 0.24 eV (95 %, TT,TE,EE+lowE+lensing). (59b)

The joint constraints using polarization are however sensi-
tive to the details of the high-` polarization likelihoods, with the
CamSpec likelihood giving significantly weaker constraints with
polarization:

X
m⌫ < 0.38 eV (95 %, TT,TE,EE+lowE [CamSpec]) (60a)

X
m⌫ < 0.27 eV (95 %, TT,TE,EE+lowE

+lensing [CamSpec]). (60b)

As discussed in Sect. 6.2, the CamSpec TT,TE,EE+lowE like-
lihood shows a weaker preference for higher lensing amplitude
AL than the default Plik likelihood, and this propagates directly
into a weaker constraint on the neutrino mass, since for small
masses the constraint is largely determined by the lensing e↵ect.
The di↵erences between Plik and CamSpec are much smaller
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RR model of Dirian et al. (2016); these models are not discussed
here.

Overall, the EFT sub-class of non-minimally coupled k-
essence models considered here is not preferred by current data.
Without using CMB and galaxy WL lensing, Planck gives a
moderate preference for models that predict more lensing com-
pared to ⇤CDM (as found in our investigation of the (µ, ⌘)
parameterization). However, combining Planck with CMB and
DES WL lensing measurements disfavours high lensing ampli-
tudes and pulls the parameters towards ⇤CDM.

7.4.4. General remarks

Planck alone provides relatively weak constraints on dark energy
and modified gravity, but Planck does constrain other cosmolog-
ical parameters extremely well. By combining Planck with ex-
ternal data we then obtain tight constraints on these models. We
find no strong evidence for deviations from ⇤CDM, either at the
background level or when allowing for changes to the perturba-
tions. At the background level, ⇤CDM is close to the best fit.
In the simple µ–⌘ and EFT parameterizations of perturbation-
level deviations from GR, we do find better fits to the Planck

TT,TE,EE+lowE data compared to ⇤CDM, but this is largely
associated with the preference in the CMB power spectra for
higher lensing amplitudes (as discussed in Sect. 6.2), rather than
a distinctive preference for modified gravity. Adding weak lens-
ing data disfavours the large lensing amplitudes and our results
are consistent with ⇤CDM to within 1�. Since neutrino masses
are in general degenerate with DE and MG parameters, it is also
worth testing the impact of varying neutrino masses versus fix-
ing them to our base-⇤CDM value of m⌫ = 0.06 eV. We find
similar trends, with slightly larger posteriors when varying the
neutrino mass.

7.5. Neutrinos and extra relativistic species

7.5.1. Neutrino masses

The Planck base-⇤CDM model assumes a normal mass hierar-
chy with the minimal mass

P
m⌫ = 0.06 eV allowed by neutrino

flavour oscillation experiments. However, current observations
are consistent with many neutrino mass models, and there are
no compelling theoretical reasons to strongly prefer any one of
them. Since the masses are already known to be non-zero, allow-
ing for larger

P
m⌫ is one of the most well-motivated extensions

of the base model. The normal hierarchy, in which the lowest two
mass eigenstates have the smallest mass splitting, can give anyP

m⌫ >⇠ 0.06 eV; an inverted hierarchy, in which the two most
massive eigenstates have the smallest mass separation, requiresP

m⌫ >⇠ 0.1 eV. A constraint that
P

m⌫ < 0.1 eV would therefore
rule out the inverted hierarchy. For a review of neutrino physics
and the impact on cosmology see e.g., Lesgourgues et al. (2013).

As in PCP13 and PCP15, we quote constraints assuming
three species of neutrino with degenerate mass, a Fermi-Dirac
distribution, and zero chemical potential. At Planck sensitivity
the small mass splittings can be neglected to good accuracy (see
e.g., Lesgourgues & Pastor 2006). Neutrinos that become non-
relativistic around recombination produce distinctive signals in
the CMB power spectra, which Planck and other experiments
have already ruled out. If the neutrino mass is low enough that
they became non-relativistic after recombination (m⌫ ⌧ 1 eV),
the main e↵ect on the CMB power spectra is a change in the
angular diameter distance that is degenerate with decreasing H0.
The Planck data then mainly constrain lower masses via the lens-

ing power spectrum and the impact of lensing on the CMB power
spectra. Since the CMB power spectra prefer slightly more lens-
ing than in the base-⇤CDM model, and neutrino mass can only
suppress the power, we obtain somewhat stronger constraints
than might be expected in typical realizations of a minimal-mass
neutrino model.

In PCP15 no preference for higher neutrino masses was
found, but a tail to high neutrino masses was still allowed, with
relatively high primordial amplitudes As combining with high
neutrino mass to give acceptable lensing power. The tighter
2018 constraint on the optical depth from polarization at low
multipoles restricts the primordial As to be smaller, to match
the same observed high-` power (C` / Ase

�2⌧); this reduces
the parameter space with larger neutrino masses, giving tighter
constraints on the mass. With only temperature information at
high `, the 95 % CL upper bound moved from 0.72 eV (PCP15
TT+lowP) to 0.59 eV (using the SimLow polarization likelihood
of Planck Collaboration Int. XLVI 2016, at low `). This now fur-
ther tightens to

X
m⌫ < 0.54 eV (95 %, Planck TT+lowE). (58a)

Adding high-` polarization further restricts residual parameter
degeneracies, and the limit improves to

X
m⌫ < 0.26 eV (95 %, Planck TT,TE,EE+lowE). (58b)

Although the high-` TT spectrum prefers more lensing than in
base ⇤CDM, the lensing reconstruction is very consistent with
expected amplitudes. In PCP15, the 2015 lensing likelihood
weakened joint neutrino mass constraints because it preferred
substantially less lensing than the temperature power spectrum.
The 2018 lensing construction gives a slightly (1–2 %) higher
lensing power spectrum amplitude than in 2015, which, com-
bined with the decrease in the range of higher lensing ampli-
tudes allowed by the new TT+lowE likelihood, means that the
constraints are more consistent. Adding lensing therefore now
slightly tightens the constraints to

X
m⌫ < 0.44 eV (95 %, TT+lowE+lensing), (59a)

X
m⌫ < 0.24 eV (95 %, TT,TE,EE+lowE+lensing). (59b)

The joint constraints using polarization are however sensi-
tive to the details of the high-` polarization likelihoods, with the
CamSpec likelihood giving significantly weaker constraints with
polarization:

X
m⌫ < 0.38 eV (95 %, TT,TE,EE+lowE [CamSpec]) (60a)

X
m⌫ < 0.27 eV (95 %, TT,TE,EE+lowE

+lensing [CamSpec]). (60b)

As discussed in Sect. 6.2, the CamSpec TT,TE,EE+lowE like-
lihood shows a weaker preference for higher lensing amplitude
AL than the default Plik likelihood, and this propagates directly
into a weaker constraint on the neutrino mass, since for small
masses the constraint is largely determined by the lensing e↵ect.
The di↵erences between Plik and CamSpec are much smaller
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if we add CMB lensing, since the lensing measurements restrict
the lensing amplitude to values closer to those expected in base
⇤CDM.

The combination of the acoustic scale measured by the CMB
(✓MC) and BAO data is su�cient to largely determine the back-
ground geometry in the ⇤CDM+

P
m⌫ model, since the lower-

redshift BAO data break the geometric degeneracy. Combining
BAO data with the CMB lensing reconstruction power spectrum
(with priors on ⌦bh

2 and ns, following PL2015), the neutrino
mass can also be constrained to be
X

m⌫ < 0.60 eV (95 %, Planck lensing+BAO+✓MC). (61)

This number is consistent with the tighter constraints using the
CMB power spectra, and almost independent of lensing e↵ects
in the CMB spectra; it would hold even if the AL tension dis-
cussed in Sect. 6.2 were interpreted as a sign of unknown resid-
ual systematics. Since the constraint from the CMB power spec-
tra is strongly limited by the geometrical degeneracy, adding
BAO data to the Planck likelihood significantly tightens the neu-
trino mass constraints. Without CMB lensing we find

X
m⌫ < 0.16 eV (95 %, Planck TT+lowE+BAO), (62a)

X
m⌫ < 0.13 eV (95 %, Planck TT,TE,EE+lowE

+BAO), (62b)

and combining with lensing the limits further tighten to

X
m⌫ < 0.13 eV (95 %, Planck TT+lowE+lensing

+BAO), (63a)

X
m⌫ < 0.12 eV (95 %, Planck TT,TE,EE+lowE

+lensing+BAO). (63b)

These combined constraints are almost immune to high-` po-
larization modelling uncertainties, with the CamSpec likelihood
giving the 95 % limit

P
m⌫ < 0.13 eV for Planck TT,TE,EE

+lowE+lensing+BAO.
Adding the Pantheon SNe data marginally tightens the bound

to
P

m⌫ < 0.11 eV (95 %, Planck TT,TE,EE+lowE+lensing
+BAO+Pantheon). In contrast the full DES 1-year data prefer a
slightly lower �8 value than the Planck ⇤CDM best fit, so DES
slightly favours higher neutrino masses, relaxing the bound toP

m⌫ < 0.14 eV (95 %, Planck TT,TE,EE+lowE+lensing+BAO
+DES).

Increasing the neutrino mass leads to lower values of H0, and
hence aggravates the tension with the distance-ladder determina-
tion of Riess et al. (2018a, see Fig. 34). Adding the Riess et al.
(2018a) H0 measurement to Planck will therefore give even
tighter neutrino mass constraints (see the parameter tables in the
PLA), but such constraints should be interpreted cautiously until
the Hubble tension is better understood.

The remarkably tight constraints using CMB and BAO data
are comparable with the latest bounds from combining with
Ly↵ forest data (Palanque-Delabrouille et al. 2015; Yèche et al.
2017). Although Ly↵ is a more direct probe of the neutrino mass
(in the sense that it is sensitive to the matter power spectrum on
scales where the suppression caused by neutrinos is expected
to be significant) the measurements are substantially more dif-
ficult to model and interpret than the CMB and BAO data. Our

Fig. 34. Samples from Planck TT,TE,EE+lowE chains in theP
m⌫–H0 plane, colour-coded by �8. Solid black contours

show the constraints from Planck TT,TE,EE+lowE+lensing,
while dashed blue lines show the joint constraint from Planck

TT,TE,EE+lowE+lensing+BAO, and the dashed green lines ad-
ditionally marginalize over Ne↵ . The grey band on the left shows
the region with

P
m⌫ < 0.056 eV ruled out by neutrino oscilla-

tion experiments. Mass splittings observed in neutrino oscilla-
tion experiments also imply that the region left of the dotted ver-
tical line can only be a normal hierarchy (NH), while the region
to the right could be either the normal hierarchy or an inverted
hierarchy (IH).

95 % limit of
P

m⌫ < 0.12 eV starts to put pressure on the in-
verted mass hierarchy (which requires

P
m⌫ >⇠ 0.1 eV) indepen-

dently of Ly↵ data. This is consistent with constraints from neu-
trino laboratory experiments which also slightly prefer the nor-
mal hierarchy at 2–3� (Adamson et al. 2017; Abe et al. 2018;
Capozzi et al. 2018).

7.5.2. Effective number of relativistic species

New light particles appear in many extensions of the Standard
Model of particle physics. Additional dark relativistic degrees
of freedom are usually parameterized by Ne↵ , defined so that
the total relativistic energy density well after electron-positron
annihilation is given by

⇢rad = Ne↵
7
8

 
4

11

!4/3

⇢�. (64)

The standard cosmological model has Ne↵ ⇡ 3.046, slightly
larger than 3 since the three standard model neutrinos were
not completely decoupled at electron-positron annihilation
(Mangano et al. 2002; de Salas & Pastor 2016).

We can treat any additional massless particles produced well
before recombination (that neither interact nor decay) as simply
an additional contribution to Ne↵ . Any species that was initially
in thermal equilibrium with the Standard Model particles pro-
duces a �Ne↵ (⌘ Ne↵ � 3.046) that depends only on the number
of degrees of freedom and decoupling temperature. Using con-
servation of entropy, fully thermalized relics with g degrees of
freedom contribute

�Ne↵ = g

"
43

4 gs

#4/3

⇥

(
4/7 boson,
1/2 fermion, (65)
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if we add CMB lensing, since the lensing measurements restrict
the lensing amplitude to values closer to those expected in base
⇤CDM.

The combination of the acoustic scale measured by the CMB
(✓MC) and BAO data is su�cient to largely determine the back-
ground geometry in the ⇤CDM+

P
m⌫ model, since the lower-

redshift BAO data break the geometric degeneracy. Combining
BAO data with the CMB lensing reconstruction power spectrum
(with priors on ⌦bh

2 and ns, following PL2015), the neutrino
mass can also be constrained to be
X

m⌫ < 0.60 eV (95 %, Planck lensing+BAO+✓MC). (61)

This number is consistent with the tighter constraints using the
CMB power spectra, and almost independent of lensing e↵ects
in the CMB spectra; it would hold even if the AL tension dis-
cussed in Sect. 6.2 were interpreted as a sign of unknown resid-
ual systematics. Since the constraint from the CMB power spec-
tra is strongly limited by the geometrical degeneracy, adding
BAO data to the Planck likelihood significantly tightens the neu-
trino mass constraints. Without CMB lensing we find

X
m⌫ < 0.16 eV (95 %, Planck TT+lowE+BAO), (62a)

X
m⌫ < 0.13 eV (95 %, Planck TT,TE,EE+lowE

+BAO), (62b)

and combining with lensing the limits further tighten to

X
m⌫ < 0.13 eV (95 %, Planck TT+lowE+lensing

+BAO), (63a)

X
m⌫ < 0.12 eV (95 %, Planck TT,TE,EE+lowE

+lensing+BAO). (63b)

These combined constraints are almost immune to high-` po-
larization modelling uncertainties, with the CamSpec likelihood
giving the 95 % limit

P
m⌫ < 0.13 eV for Planck TT,TE,EE

+lowE+lensing+BAO.
Adding the Pantheon SNe data marginally tightens the bound

to
P

m⌫ < 0.11 eV (95 %, Planck TT,TE,EE+lowE+lensing
+BAO+Pantheon). In contrast the full DES 1-year data prefer a
slightly lower �8 value than the Planck ⇤CDM best fit, so DES
slightly favours higher neutrino masses, relaxing the bound toP

m⌫ < 0.14 eV (95 %, Planck TT,TE,EE+lowE+lensing+BAO
+DES).

Increasing the neutrino mass leads to lower values of H0, and
hence aggravates the tension with the distance-ladder determina-
tion of Riess et al. (2018a, see Fig. 34). Adding the Riess et al.
(2018a) H0 measurement to Planck will therefore give even
tighter neutrino mass constraints (see the parameter tables in the
PLA), but such constraints should be interpreted cautiously until
the Hubble tension is better understood.

The remarkably tight constraints using CMB and BAO data
are comparable with the latest bounds from combining with
Ly↵ forest data (Palanque-Delabrouille et al. 2015; Yèche et al.
2017). Although Ly↵ is a more direct probe of the neutrino mass
(in the sense that it is sensitive to the matter power spectrum on
scales where the suppression caused by neutrinos is expected
to be significant) the measurements are substantially more dif-
ficult to model and interpret than the CMB and BAO data. Our

Fig. 34. Samples from Planck TT,TE,EE+lowE chains in theP
m⌫–H0 plane, colour-coded by �8. Solid black contours

show the constraints from Planck TT,TE,EE+lowE+lensing,
while dashed blue lines show the joint constraint from Planck

TT,TE,EE+lowE+lensing+BAO, and the dashed green lines ad-
ditionally marginalize over Ne↵ . The grey band on the left shows
the region with

P
m⌫ < 0.056 eV ruled out by neutrino oscilla-

tion experiments. Mass splittings observed in neutrino oscilla-
tion experiments also imply that the region left of the dotted ver-
tical line can only be a normal hierarchy (NH), while the region
to the right could be either the normal hierarchy or an inverted
hierarchy (IH).

95 % limit of
P

m⌫ < 0.12 eV starts to put pressure on the in-
verted mass hierarchy (which requires

P
m⌫ >⇠ 0.1 eV) indepen-

dently of Ly↵ data. This is consistent with constraints from neu-
trino laboratory experiments which also slightly prefer the nor-
mal hierarchy at 2–3� (Adamson et al. 2017; Abe et al. 2018;
Capozzi et al. 2018).

7.5.2. Effective number of relativistic species

New light particles appear in many extensions of the Standard
Model of particle physics. Additional dark relativistic degrees
of freedom are usually parameterized by Ne↵ , defined so that
the total relativistic energy density well after electron-positron
annihilation is given by

⇢rad = Ne↵
7
8

 
4

11

!4/3

⇢�. (64)

The standard cosmological model has Ne↵ ⇡ 3.046, slightly
larger than 3 since the three standard model neutrinos were
not completely decoupled at electron-positron annihilation
(Mangano et al. 2002; de Salas & Pastor 2016).

We can treat any additional massless particles produced well
before recombination (that neither interact nor decay) as simply
an additional contribution to Ne↵ . Any species that was initially
in thermal equilibrium with the Standard Model particles pro-
duces a �Ne↵ (⌘ Ne↵ � 3.046) that depends only on the number
of degrees of freedom and decoupling temperature. Using con-
servation of entropy, fully thermalized relics with g degrees of
freedom contribute

�Ne↵ = g

"
43

4 gs

#4/3

⇥

(
4/7 boson,
1/2 fermion, (65)

47

���
�
 ���� ��
����	
�� �
 
����	
� ����
! Constraints on the total neutrino mass
! Degenerate mass model (m1=m2=m3); mass splittings are neglected
! New tighter constraint on optical depth leads to tighter constraints on neutrino mass
! Both polarization and lensing tighten the constraints

Planck 2018, 1807.06209

☄ ∑m! is in anti-correlation with H0: Adding H0 measurement will tighten mass constraints, but this is due to
Hubble tension

☄ This anti-correlation is changed if dynamical dark energy is considered [X. Zhang, Phys. Rev. D 93 (2016)
083011, arXiv:1511.02651]

☄ Dynamical dark energy affects the constraints on neutrino mass greatly [X. Zhang, Sci. China Phys. Mech.
Astron. 60 (2017) 060431, arXiv:1703.00651]

☄ Tight limit of ∑m! < 0.12 eV puts pressure on IH (∑m! > 0.1 eV)
☄ Consistent with constraints from neutrino laboratory experiments which also slightly prefer NH at 2-3"



���
�
 ���� ��
����	
�� �
 
����	
� ����
! Consider mass hierarchies
! Consider impacts of dynamical dark energy
! NH: ∑m! > 0.06 eV
! IH: ∑m! > 0.1 eV

⭐ Planck 2018+BAO+SN
⭐ "CDM: ∑m# < 0.12 eV (DH), < 0.16 eV (NH), < 0.19 eV (IH)
⭐ wCDM: ∑m# < 0.16 eV (DH), < 0.20 eV (NH), < 0.22 eV (IH)
⭐ w0waCDM: ∑m# < 0.25 eV (DH), < 0.28 eV (NH), < 0.31 eV (IH)
⭐ NH is more favored over IH ($2NH<$2IH ) [see a series of works by XZ’s group]

M. Zhang, J. F. Zhang & X. Zhang, in preparation
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! Cosmic relic neutrinos: decoupled from thermal bath at 1s when T was 1MeV
! Current: 56 cm-3 for each flavor
! PTOLEMY: the first experiment
! 100 g of tritium, graphene target, planned energy resolution 0.15 eV
! Majorana vs. Dirac
! C"B capture rate: 4 yr-1 (Dirac), 8 yr-1 (Majorana)
! Can constrain neutrino mass
! Massive neutrinos: gravitational clustering in the MW? Impacts on the experiment?
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and phase space distributions, so that lots of computing time can
be saved.

Thermal relic neutrinos. In this work we consider a benchmark
N-one-body simulation with mν= 0.15 eV and thermal
Fermi–Dirac phase space distribution. See the Methods section
for the details about this benchmark simulation. The reweighting
technique then enables us to obtain neutrino densitiy profiles
nν(r) for other neutrino masses and phase space distributions.
Consider the thermal phase space distribution first. In Fig. 1a, we
show the neutrino density contrast δν, defined as δν ! nν=nν " 1
with nν being the average neutrino number density (δν corre-
sponds to fc− 1 in ref. 8), as a function of the distance r to the
galactic center of MW. The results of four different neutrino
masses are shown, and the neutrino halos can extend up to a few
mega parsecs. At the location of the Earth (r⊕= 8 kpc) the
neutrino density is enhanced by about 10% (115%) for the case of
mν= 0.05 (0.15) eV, due to the gravitational clustering effects.

For a fixed distance r, the relationship between the neutrino
density contrast δν and mν is displayed in Fig. 1b. We observe that
for the three different distances of r, all the scatter points obtained
from the N-one-body simulation can be well fitted by a power-
law function of δν / mγ

ν . The obtained exponents γ are around
two for all cases, indicating that the linear approximation5,6 is
appropriate in light of current cosmological constraints that favor
small neutrino masses10. Recall that in the Vlasov equation9 for
the phase space distribution function there exists a term involving
both the gravitational potential ϕ and the distribution function f.
In the linear approximation, one approximates the distribution
function f in that term with the corresponding distribution
function f0 without the presence of gravitational potential, so that
the modified Vlasov equation becomes linear in both ϕ and f. The
underlying requirement for making the linear approximation is
that the perturbed distribution function f should be close to the
unperturbed one f0, or the neutrino density contrast does not
exceed greatly over order unity. For the neutrino masses
considered in this work, according to Fig. 1 we find that the
gravitational clustering effects are moderate so that the linear
approximation works well here. However, if larger neutrino
masses or heavier halo masses were considered, because of more
enhanced gravitational clustering effects, the linear approxima-
tion would no longer be applicable, and the resulting power-law
indices could have large deviations from two5.

At the location of the Earth, the fitted power-law function for
thermal relic neutrinos is given by

δFDν r#
! "

¼ 76:5
mν

eV

# $2:21
;mν 2 0:04; 0:15½ & eV: ð5Þ

A similar power-law function11 was obtained for higher neutrino
masses mν∈[0.15, 0.6] eV, by fitting previous N-one-body
simulation results5. In the recent literature two benchmark values
of mν= 0.06 eV and 0.15 eV are also studied8. Since the adopted
DM and baryonic matter profiles in this work are the same as
those in ref. 8, we can directly compare our results with those in
ref. 8. After taking into account the uncertainties from discrete
sampling, we find that both results agree with each other,
validating the reweighting technique. With the above fitted
relation we can obtain neutrino number densities for all neutrinos
within the mass range of [0.04, 0.15] eV. For mν < 0.04 eV, the
clustering effects due to the gravitational potential of baryonic
matter and DM in the MW are insignificant, namely, the neutrino
density contrast is less than about 0.05 at the location of the
Earth. As a result, other astrophysical uncertainties, such as the
contribution from the Virgo cluster8,12, may play more important
role in predicting the local neutrino number densities. Further-
more, when mν < 0.04 eV, the required energy resolution Δ (full
width at half maximum of the Gaussian distribution) is estimated
to be Δ≃0.7mν < 0.03 eV13, which is beyond the reach of the
current proposal of the PTOLEMY experiment2. For these
reasons, we choose not to consider the neutrino masses below
0.04 eV here.

New physics scenarios with non-thermal relic neutrinos. It is
also interesting to consider new physics (NP) scenarios, in which
some chiral states of neutrinos in the early Universe are non-
thermal and possess a phase space distribution that is significantly
deviated from the thermal Fermi–Dirac distribution. For illus-
tration, we consider a fully degenerate phase space distribution14,

f degðyÞ ¼ 1; y<y0; ð6Þ

where y0= 1.76 ensures the same average neutrino density as the
thermal case. With the reweighting technique, we can also obtain
the neutrino density profiles for this non-thermal case from the
benchmark simulation. From Fig. 2, we observe that the neutrino
contrast δν is about twice of that in the thermal case when
mν≲0.1 eV. This is due to the fact that in the fully degenerate
case more relic neutrinos reside in the low momentum states. For
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Fig. 1 Clustering of thermal relic neutrinos in the MW. a The neutrino contrast δν ¼ nν=nν " 1 as a function of the distance r to the galactic center of MW.
The location of the Earth r⊕= 8 kpc is indicated by a gray vertical line. b The neutrino contrast δν as a function of the neutrino mass mν for three different
distances of r to the galactic center of MW. Both the horizontal and vertical axes are in logarithmic scale. Scatter points are the N-one-body simulation
results. Each set of scatter points is well fitted by a power-law function δν / mγ
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The standard model of cosmology predicts that neutrinos
were decoupled from the thermal bath when the tem-
perature of the Universe was about 1MeV. These relic

neutrinos constitute the current cosmic neutrino background.
Detecting cosmic relic neutrinos1, as proposed in the upcoming
PTOLEMY experiment2, is thus a direct test of the standard
model of cosmology, and can push our understanding of the
Universe to its age of about one second. In order to detect them in
the neighborhood of the Earth, a prerequisite would be to figure
out the number density of relic neutrinos at our local environ-
ment. Although the standard model of cosmology does predict
that the average number density of relic neutrinos in the current
Universe is about 56 cm−3 for each flavor3, more relic neutrinos
can be accreted around the Earth, due to the fact that massive
neutrinos suffer from the gravitational potential of both dark
matter (DM) and baryonic matter in the Milky Way (MW).
Investigating the gravitational clustering of relic neutrinos is thus
a necessary step towards interpreting the results from the future
detection of cosmic neutrino background.

Gravitational clustering effects are often studied numerically
with the N-body simulation method. However, to reach a reso-
lution of ~8 kpc, the distance from the Earth to the galactic center
of the MW, the N-body simulation turns out to be computa-
tionally expensive4. In 2004, a restricted but effective method
called N-one-body simulation was proposed to evaluate the
gravitational clustering effects of relic neutrinos5. In contrast with
the N-body simulation, where all the interactions among particles
are included, relic neutrinos in the N-one-body simulation are
assumed to evolve under the gravitational potential of both DM
and baryonic matter. The back reaction, i.e., the gravitational
effects of neutrinos on the clustering of DM and baryonic matter,
and the gravitational interactions among neutrinos are both
considered to be negligible5,6. This assumption works for the
evolution of the Universe at a late stage (z≲ 3 with z being the
redshift), when the energy density of neutrinos is much smaller
than that of DM3. To implement the N-one-body simulation, one
first divides the initial phase space of neutrinos into N-indepen-
dent chunks, and then evolves each chunk following a one-body
motion in the gravitational potential generated by DM and bar-
yonic matter. Assembling all the N chunks with their corre-
sponding weights after the evolution yields the final phase space
distribution of neutrinos.

In this work we introduce a reweighting technique in the N-
one-body simulation, so that a single N-one-body simulation is
sufficient to yield neutrino density profiles for different neutrino
masses and phase space distributions. For small neutrino masses,
we find that the neutrino number density contrast is almost
proportional to the square of neutrino mass. The dependence of
gravitational clustering effects on the phase space distribution is
also investigated, followed by the implications of gravitational
clustering effects on interpreting the results from the future
detection of cosmic neutrino background.

Results
Normalized evolution equations. Here we adopt a generalized
Navarro–Frenk–White (NFW) profile7 for the DM distribution in
the MW, while for the baryonic matter distribution a spherically
symmetric profile is also assumed for simplicity8. See the Meth-
ods section for the details about the matter density profiles used
in the numerical simulation.

Within the spherical gravitational potential ϕ(r), the one-body
motion of a test particle with the mass mν is confined to a plane,
and obeys the following Hamiltonian equations9

dr
dτ

¼ pr
amν

;
dpr
dτ

¼ ‘2

amνr3
" amν

∂ϕ
∂r

; ð1Þ

where a= 1/(1+ z) is the scale factor of the Universe, τ is the
conformal time defined as dτ= dt/a(t), and pr ¼ amν _r and ‘ ¼
amνr

2 _θ are the canonical momenta conjugate to r and θ,
respectively. Here the dot denotes the derivative with respect to τ,
and (r, θ) are the polar coordinates in the comoving frame. The
gravitational potential ϕ(r, τ) also evolves and its evolution is
assumed to be independent of relic neutrinos in the N-one-body
simulation. Because of spherical symmetry, ‘ is a conserved
quantity and we may ignore the motion in the θ direction. A key
observation in developing the reweighting technique is to identify
that the evolution equations in Eq. (1) can be written in a form
independent of the neutrino mass mν. Namely, with the
normalized quantities ur % pr=mν ¼ a_r and uθ % ‘=mν ¼ ar2 _θ,
the following normalized evolution equations can be derived5

dr
dz

¼ " ur
da=dt

;
dur
dz

¼ " 1
da=dt

u2θ
r3

" a2
∂ϕ
∂r

! "
: ð2Þ

These normalized evolution equations are the ones implemented
in our N-one-body simulation.

Reweighting technique. The essence of the reweighting techni-
que is to let a test particle represent all the particles within a fixed
interval (ra, ur,a, uθ,a)→ (rb, ur,b, uθ,b) in the space spanned by (r,
ur, uθ). The size of the interval does not depend on the mass or
the phase space distribution of relic neutrinos. The dependences
on these quantities arise when associating weight to the fixed
interval (ra, ur,a, uθ,a)→ (rb, ur,b, uθ,b). To illustrate that, we first
introduce another variable set of (r, y, ψ), with y= p/Tν,0. Here p
denotes the magnitude of the canonical momentum, ψ is the
direction of momentum with respect to the positive radial
direction, and Tν,0 is the neutrino temperature at the present time.
The transformations between (ur, uθ) and (y, ψ) are given by
ψ ¼ tan"1 rur=uθð Þ and y=mνur/(cosψTν,0). Therefore, the fixed
interval (ra, ur,a, uθ,a)→ (rb, ur,b, uθ,b) corresponds to an interval
(ra, ya, ψa)→ (rb, yb, ψb), which will have varying lower limit (ya)
and upper limit (yb) depending on the neutrino mass mν. For the
phase space interval (ra, ya, ψa)→ (rb, yb, ψb), we obtain its
associated weight dw as follows5

dw ¼ 8π2T3
ν;0

Z rb

ra

r2 dr
Z yb

ya

f ðyÞy2 dy
Z ψb

ψa

sinψdψ; ð3Þ

where spherical symmetry is applied, and f(y) is the phase space
distribution function. In the case of thermal relic neutrinos, f(y)
follows the Fermi–Dirac form

f FDðyÞ ¼ 1
1þ ey

: ð4Þ

The effect of neutrino masses reflects then in the lower and upper
limits of y for a fixed interval in terms of (r, ur, uθ), while for
different phase space distributions one simply uses the corre-
sponding forms of f(y).

In practice, one still needs to perform a benchmark simulation
with definite neutrino mass and phase space distribution. This
benchmark simulation serves two purposes. First, the one-body
evolutions of N test particles can be obtained. Second, in the
benchmark simulation the initial phase space of relic neutrinos is
discretized, and such a discretization would fix the interval
(ra, ur,a, uθ,a)→ (rb, ur,b, uθ,b) for each evolved sample. When
switching to another neutrino mass or a different phase space
distribution, on one hand we can reuse those one-body evolution
results from the benchmark simulation, and on the other hand we
can associate a new weight to each evolved sample according to
Eq. (3). With this reweighting technique, we then do not need to
rerun the N-one-body simulation for different neutrino masses
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The standard model of cosmology predicts that neutrinos
were decoupled from the thermal bath when the tem-
perature of the Universe was about 1MeV. These relic

neutrinos constitute the current cosmic neutrino background.
Detecting cosmic relic neutrinos1, as proposed in the upcoming
PTOLEMY experiment2, is thus a direct test of the standard
model of cosmology, and can push our understanding of the
Universe to its age of about one second. In order to detect them in
the neighborhood of the Earth, a prerequisite would be to figure
out the number density of relic neutrinos at our local environ-
ment. Although the standard model of cosmology does predict
that the average number density of relic neutrinos in the current
Universe is about 56 cm−3 for each flavor3, more relic neutrinos
can be accreted around the Earth, due to the fact that massive
neutrinos suffer from the gravitational potential of both dark
matter (DM) and baryonic matter in the Milky Way (MW).
Investigating the gravitational clustering of relic neutrinos is thus
a necessary step towards interpreting the results from the future
detection of cosmic neutrino background.

Gravitational clustering effects are often studied numerically
with the N-body simulation method. However, to reach a reso-
lution of ~8 kpc, the distance from the Earth to the galactic center
of the MW, the N-body simulation turns out to be computa-
tionally expensive4. In 2004, a restricted but effective method
called N-one-body simulation was proposed to evaluate the
gravitational clustering effects of relic neutrinos5. In contrast with
the N-body simulation, where all the interactions among particles
are included, relic neutrinos in the N-one-body simulation are
assumed to evolve under the gravitational potential of both DM
and baryonic matter. The back reaction, i.e., the gravitational
effects of neutrinos on the clustering of DM and baryonic matter,
and the gravitational interactions among neutrinos are both
considered to be negligible5,6. This assumption works for the
evolution of the Universe at a late stage (z≲ 3 with z being the
redshift), when the energy density of neutrinos is much smaller
than that of DM3. To implement the N-one-body simulation, one
first divides the initial phase space of neutrinos into N-indepen-
dent chunks, and then evolves each chunk following a one-body
motion in the gravitational potential generated by DM and bar-
yonic matter. Assembling all the N chunks with their corre-
sponding weights after the evolution yields the final phase space
distribution of neutrinos.

In this work we introduce a reweighting technique in the N-
one-body simulation, so that a single N-one-body simulation is
sufficient to yield neutrino density profiles for different neutrino
masses and phase space distributions. For small neutrino masses,
we find that the neutrino number density contrast is almost
proportional to the square of neutrino mass. The dependence of
gravitational clustering effects on the phase space distribution is
also investigated, followed by the implications of gravitational
clustering effects on interpreting the results from the future
detection of cosmic neutrino background.

Results
Normalized evolution equations. Here we adopt a generalized
Navarro–Frenk–White (NFW) profile7 for the DM distribution in
the MW, while for the baryonic matter distribution a spherically
symmetric profile is also assumed for simplicity8. See the Meth-
ods section for the details about the matter density profiles used
in the numerical simulation.

Within the spherical gravitational potential ϕ(r), the one-body
motion of a test particle with the mass mν is confined to a plane,
and obeys the following Hamiltonian equations9

dr
dτ

¼ pr
amν

;
dpr
dτ

¼ ‘2

amνr3
" amν

∂ϕ
∂r

; ð1Þ

where a= 1/(1+ z) is the scale factor of the Universe, τ is the
conformal time defined as dτ= dt/a(t), and pr ¼ amν _r and ‘ ¼
amνr

2 _θ are the canonical momenta conjugate to r and θ,
respectively. Here the dot denotes the derivative with respect to τ,
and (r, θ) are the polar coordinates in the comoving frame. The
gravitational potential ϕ(r, τ) also evolves and its evolution is
assumed to be independent of relic neutrinos in the N-one-body
simulation. Because of spherical symmetry, ‘ is a conserved
quantity and we may ignore the motion in the θ direction. A key
observation in developing the reweighting technique is to identify
that the evolution equations in Eq. (1) can be written in a form
independent of the neutrino mass mν. Namely, with the
normalized quantities ur % pr=mν ¼ a_r and uθ % ‘=mν ¼ ar2 _θ,
the following normalized evolution equations can be derived5

dr
dz

¼ " ur
da=dt

;
dur
dz

¼ " 1
da=dt

u2θ
r3

" a2
∂ϕ
∂r

! "
: ð2Þ

These normalized evolution equations are the ones implemented
in our N-one-body simulation.

Reweighting technique. The essence of the reweighting techni-
que is to let a test particle represent all the particles within a fixed
interval (ra, ur,a, uθ,a)→ (rb, ur,b, uθ,b) in the space spanned by (r,
ur, uθ). The size of the interval does not depend on the mass or
the phase space distribution of relic neutrinos. The dependences
on these quantities arise when associating weight to the fixed
interval (ra, ur,a, uθ,a)→ (rb, ur,b, uθ,b). To illustrate that, we first
introduce another variable set of (r, y, ψ), with y= p/Tν,0. Here p
denotes the magnitude of the canonical momentum, ψ is the
direction of momentum with respect to the positive radial
direction, and Tν,0 is the neutrino temperature at the present time.
The transformations between (ur, uθ) and (y, ψ) are given by
ψ ¼ tan"1 rur=uθð Þ and y=mνur/(cosψTν,0). Therefore, the fixed
interval (ra, ur,a, uθ,a)→ (rb, ur,b, uθ,b) corresponds to an interval
(ra, ya, ψa)→ (rb, yb, ψb), which will have varying lower limit (ya)
and upper limit (yb) depending on the neutrino mass mν. For the
phase space interval (ra, ya, ψa)→ (rb, yb, ψb), we obtain its
associated weight dw as follows5

dw ¼ 8π2T3
ν;0

Z rb

ra

r2 dr
Z yb

ya

f ðyÞy2 dy
Z ψb

ψa

sinψdψ; ð3Þ

where spherical symmetry is applied, and f(y) is the phase space
distribution function. In the case of thermal relic neutrinos, f(y)
follows the Fermi–Dirac form

f FDðyÞ ¼ 1
1þ ey

: ð4Þ

The effect of neutrino masses reflects then in the lower and upper
limits of y for a fixed interval in terms of (r, ur, uθ), while for
different phase space distributions one simply uses the corre-
sponding forms of f(y).

In practice, one still needs to perform a benchmark simulation
with definite neutrino mass and phase space distribution. This
benchmark simulation serves two purposes. First, the one-body
evolutions of N test particles can be obtained. Second, in the
benchmark simulation the initial phase space of relic neutrinos is
discretized, and such a discretization would fix the interval
(ra, ur,a, uθ,a)→ (rb, ur,b, uθ,b) for each evolved sample. When
switching to another neutrino mass or a different phase space
distribution, on one hand we can reuse those one-body evolution
results from the benchmark simulation, and on the other hand we
can associate a new weight to each evolved sample according to
Eq. (3). With this reweighting technique, we then do not need to
rerun the N-one-body simulation for different neutrino masses
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spherically symmetric. However, since each relic neutrino still
follows a one-body motion under the total gravitational potential,
the N-one-body simulation and the reweighting technique are
still applicable, except that the normalized evolution equations in
Eq. (2) and the associated weight for each test particle in Eq. (3)
would be in more general forms without the spherical symmetry.
Moreover, the currently used matter density profile of the MW
still has some uncertainties8, and thus the reweighting technique
would also become useful, were we plan to update the N-one-
body simulation with more accurate matter density profile in the
future. In short, the reweighting technique simplifies the task of
using the N-one-body simulation method to evaluate the grav-
itational clustering effects on relic neutrinos, and is useful for
studying the phenomenology associated with the future detection
of the cosmic neutrino background.

Methods
DM and baryonic matter density profiles in the MW. The DM density profile is
taken to be a generalized NFW form8,

ρDMðr; zÞ ¼ N ðzÞ r
rsðzÞ

! "$η

1þ r
rsðzÞ

! "$3þη

: ð7Þ

The parameter η is kept to be redshift-independent, while rs(z) and N ðzÞ are
evolved with redshift z. Here we adopt the best-fit values of ðη; rsð0Þ;N ð0ÞÞ=
(0.53, 20.29 kpc, 0.73) from a χ2-fit8 to data19. The evolutions of rs(z) and N ðzÞ are
dictated by the evolutions of the viral quantities Δvir(z) and cvir(Mvir, z), which are
defined as

ΔvirðzÞ &
Mvir

4π
3 a

3r3virðzÞρcritðzÞ
; ð8Þ

cvir Mvir; zð Þ & rvirðzÞ
rsðzÞ

: ð9Þ

Here Mvir and rvir(z) are the virial mass and radius, respectively, and they are
related by the following equation

Mvir ¼ 4πa3
Z rvirðzÞ

0
ρDMðr′; zÞr′2dr′: ð10Þ

Note that Mvir is redshift-independent. The evolution of the critical density ρcrit(z)
is

ρcritðzÞ ¼
3H2

0

8πG
Ωm;0ð1þ zÞ3 þ 1$ Ωm;0

# $h i
; ð11Þ

where G is the gravitational constant, and H0 and Ωm,0 are the present values of the
Hubble parameter and the matter density fraction, respectively. Here we adopt the
best-fit values from the Planck data (H0, Ωm,0)= (67.27 km s−1 Mpc−1, 0.3156)10.

Given the three equations Eqs. (8), (9) and (10) and the quantities Mvir, Δvir(z)
and cvir(Mvir, z), we can obtain the redshift evolution for rs; rvir;Nð Þ. The evolution
of Δvir(z) is taken to be20

ΔvirðzÞ ¼ 18π2 þ 82λðzÞ $ 39λðzÞ2; ð12Þ

where λ(z)=Ωm(z)− 1 with Ωm(z) being the matter density fraction at redshift z.
With Δvir(0) and Eqs. (8), (10) and (11), we obtainMvir= 3.76 × 1012M⊙, beingM⊙
the solar mass. Subsequently, the evolution of rvir(z) is also found from Eqs. (8) and
(11). The evolution of rs(z) is related to that of rvir(z) via the concentration
parameter cvir(Mvir, z). The evolution of cvir(Mvir, z) is assumed to be cvir(Mvir, z)=
βcavgvir Mvir; zð Þ8, where cavgvir Mvir; zð Þ is taken from N-body simulations20,

log10 c
avg
vir Mvir; zð Þ ¼ AðzÞ þ BðzÞlog10

Mvir

1:49 ´ 1012M'

! "
; ð13Þ

with the functions of A(z) and B(z) given by20

AðzÞ ¼ 0:537þ 0:488exp $0:718z1:08
% &

;

BðzÞ ¼ $0:097þ 0:024z: ð14Þ

The value of β= 2.09 is then obtained from cavgvir Mvir; 0ð Þ and cvir(Mvir, 0)= rvir(0)/
rs(0). Finally, with the obtained rs(z), the evolution of N ðzÞ can be found from
Eq. (10).

For the baryonic matter density profile, in reality it has a bulge shape for the
central region of radius ~5 kpc19 and extends to be a disc in the outer region.
However, since the baryonic matter density is much smaller than the DM density
in the disc region, we choose to ignore the disc part, and assume the overall profile
of the baryonic matter density to be spherically symmetric. The actual baryonic
matter density profile as a function of the radius at the present time is adopted
from Fig. 2 in ref. 8. The redshift dependence of baryonic matter profile is modeled
with a normalization factor N bðzÞ8, and the evolution of N bðzÞ is found by
averaging over the evolution of the total stellar mass as obtained in eight MW-sized
simulated halos21.

Benchmark N-one-body simulation. In the benchmark N-one-body simulation,
we set mν= 0.15 eV and consider relic neutrinos with a Fermi–Dirac phase space
distribution. The normalized evolution equations in Eq. (2) are used, and the scale
factor is evolved as

da
dt

¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a$1Ωm;0 þ a2 1$ Ωm;0

# $r
: ð15Þ

We utilize an iteration procedure to discretize the initial phase space into finer
parts5,8, so that a smooth neutrino density profile can be achieved up to ~ 5 kpc.
Because of spherical symmetry, the set of variables to be discretized is (r, y, ψ). In
general, we have r∈ [0, ∞), y∈ [0, ∞) and ψ∈ [0, π). However, for obtaining the
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Fig. 3 Capture rate Γ in the PTOLEMY experiment. a Standard Case refers to the scenario predicted by the standard model of cosmology, i.e., only the left
(right)-handed chiral states of (anti-)neutrinos were thermally produced in the early Universe. NH (IH) stands for the normal (inverted) mass hierarchy of
neutrinos. b NP Case I and II are two new physics scenarios, and in both of them the thermal history of the left(right)-handed chiral states of (anti-)
neutrinos is the same as Standard Case. In NP Case I the right(left)-handed chiral states of (anti-)neutrinos were also thermally produced in the early
Universe, while in NP Case II the right(left)-handed chiral states of (anti-)neutrinos are non-thermal and possess the fully-degenerate phase space
distribution. The number density of the right-handed chiral states of neutrinos is taken to be 28% (52%) of that of the left-handed chiral states of neutrinos
in NP Case I (II), when neutrinos began free-streaming
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and phase space distributions, so that lots of computing time can
be saved.

Thermal relic neutrinos. In this work we consider a benchmark
N-one-body simulation with mν= 0.15 eV and thermal
Fermi–Dirac phase space distribution. See the Methods section
for the details about this benchmark simulation. The reweighting
technique then enables us to obtain neutrino densitiy profiles
nν(r) for other neutrino masses and phase space distributions.
Consider the thermal phase space distribution first. In Fig. 1a, we
show the neutrino density contrast δν, defined as δν ! nν=nν " 1
with nν being the average neutrino number density (δν corre-
sponds to fc− 1 in ref. 8), as a function of the distance r to the
galactic center of MW. The results of four different neutrino
masses are shown, and the neutrino halos can extend up to a few
mega parsecs. At the location of the Earth (r⊕= 8 kpc) the
neutrino density is enhanced by about 10% (115%) for the case of
mν= 0.05 (0.15) eV, due to the gravitational clustering effects.

For a fixed distance r, the relationship between the neutrino
density contrast δν and mν is displayed in Fig. 1b. We observe that
for the three different distances of r, all the scatter points obtained
from the N-one-body simulation can be well fitted by a power-
law function of δν / mγ

ν . The obtained exponents γ are around
two for all cases, indicating that the linear approximation5,6 is
appropriate in light of current cosmological constraints that favor
small neutrino masses10. Recall that in the Vlasov equation9 for
the phase space distribution function there exists a term involving
both the gravitational potential ϕ and the distribution function f.
In the linear approximation, one approximates the distribution
function f in that term with the corresponding distribution
function f0 without the presence of gravitational potential, so that
the modified Vlasov equation becomes linear in both ϕ and f. The
underlying requirement for making the linear approximation is
that the perturbed distribution function f should be close to the
unperturbed one f0, or the neutrino density contrast does not
exceed greatly over order unity. For the neutrino masses
considered in this work, according to Fig. 1 we find that the
gravitational clustering effects are moderate so that the linear
approximation works well here. However, if larger neutrino
masses or heavier halo masses were considered, because of more
enhanced gravitational clustering effects, the linear approxima-
tion would no longer be applicable, and the resulting power-law
indices could have large deviations from two5.

At the location of the Earth, the fitted power-law function for
thermal relic neutrinos is given by

δFDν r#
! "

¼ 76:5
mν

eV

# $2:21
;mν 2 0:04; 0:15½ & eV: ð5Þ

A similar power-law function11 was obtained for higher neutrino
masses mν∈[0.15, 0.6] eV, by fitting previous N-one-body
simulation results5. In the recent literature two benchmark values
of mν= 0.06 eV and 0.15 eV are also studied8. Since the adopted
DM and baryonic matter profiles in this work are the same as
those in ref. 8, we can directly compare our results with those in
ref. 8. After taking into account the uncertainties from discrete
sampling, we find that both results agree with each other,
validating the reweighting technique. With the above fitted
relation we can obtain neutrino number densities for all neutrinos
within the mass range of [0.04, 0.15] eV. For mν < 0.04 eV, the
clustering effects due to the gravitational potential of baryonic
matter and DM in the MW are insignificant, namely, the neutrino
density contrast is less than about 0.05 at the location of the
Earth. As a result, other astrophysical uncertainties, such as the
contribution from the Virgo cluster8,12, may play more important
role in predicting the local neutrino number densities. Further-
more, when mν < 0.04 eV, the required energy resolution Δ (full
width at half maximum of the Gaussian distribution) is estimated
to be Δ≃0.7mν < 0.03 eV13, which is beyond the reach of the
current proposal of the PTOLEMY experiment2. For these
reasons, we choose not to consider the neutrino masses below
0.04 eV here.

New physics scenarios with non-thermal relic neutrinos. It is
also interesting to consider new physics (NP) scenarios, in which
some chiral states of neutrinos in the early Universe are non-
thermal and possess a phase space distribution that is significantly
deviated from the thermal Fermi–Dirac distribution. For illus-
tration, we consider a fully degenerate phase space distribution14,

f degðyÞ ¼ 1; y<y0; ð6Þ

where y0= 1.76 ensures the same average neutrino density as the
thermal case. With the reweighting technique, we can also obtain
the neutrino density profiles for this non-thermal case from the
benchmark simulation. From Fig. 2, we observe that the neutrino
contrast δν is about twice of that in the thermal case when
mν≲0.1 eV. This is due to the fact that in the fully degenerate
case more relic neutrinos reside in the low momentum states. For
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Fig. 1 Clustering of thermal relic neutrinos in the MW. a The neutrino contrast δν ¼ nν=nν " 1 as a function of the distance r to the galactic center of MW.
The location of the Earth r⊕= 8 kpc is indicated by a gray vertical line. b The neutrino contrast δν as a function of the neutrino mass mν for three different
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! Detect cosmic relic neutrinos in the vicinity of the Earth
! Necessary to evaluate the gravitational clustering effects on relic neutrinos in the

MW
! Develop a reweighting technique in the N-one-body simulation
! A single simulation can yield neutrino density profiles for different neutrino

masses and phase space distributions
! Current observations: small neutrino masses
! Neutrino number density contrast around the Earth is found to be almost

proportional to the square of neutrino mass

Clustering of thermal relic neutrinos in theMW Capture rate ! in the PTOLEMY experiment

ARTICLE

Gravitational clustering of cosmic relic neutrinos in
the Milky Way
Jue Zhang1 & Xin Zhang 2

The standard model of cosmology predicts the existence of cosmic neutrino background in

the present Universe. To detect cosmic relic neutrinos in the vicinity of the Earth, it is

necessary to evaluate the gravitational clustering effects on relic neutrinos in the Milky Way.

Here we introduce a reweighting technique in the N-one-body simulation method, so that a

single simulation can yield neutrino density profiles for different neutrino masses and phase

space distributions. In light of current experimental results that favor small neutrino masses,

the neutrino number density contrast around the Earth is found to be almost proportional to

the square of neutrino mass. The density contrast-mass relation and the reweighting tech-

nique are useful for studying the phenomenology associated with the future detection of the

cosmic neutrino background.
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• The equations of motions can be written in a form
independent of neutrino mass

• Neutrino mass is in the lower limit (ya) and upper limit
(yb) of the associated weight

• Only need to perform a benchmark simulation with
definite neutrino mass and phase space distributionThe fitted power-law function for thermal relic neutrinos
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GW can improve constraints on neutrino mass by about 10%
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Table 1
Constraint results of the cosmological parameters by using the Planck+BAO+SN data (Data1) and the Planck+BAO+SN+GW data (Data2). Note that ∑mν is in 
units of eV and H0 is in units of km s−1 Mpc−1.

NH IH DH

Data1 Data2 Data1 Data2 Data1 Data2

"bh2 0.02235 ± 0.00014 0.02234+0.00011
−0.00012 0.02236 ± 0.00014 0.02233+0.00011

−0.00012 0.02233 ± 0.00014 0.02229+0.00012
−0.00013

"ch2 0.1183+0.0011
−0.0010 0.1187+0.0008

−0.0006 0.1180 ± 0.0010 0.1187+0.0008
−0.0006 0.1187 ± 0.0011 0.1190+0.0010

−0.0007

100θMC 1.04093+0.00030
−0.00029 1.04093 ± 0.00027 1.04094 ± 0.00030 1.04092+0.00026

−0.00027 1.04091 ± 0.00029 1.04086 ± 0.00028

τ 0.089 ± 0.017 0.086 ± 0.016 0.091 ± 0.016 0.088 ± 0.016 0.084+0.017
−0.016 0.082 ± 0.016

ln(1010 As) 3.109+0.033
−0.032 3.105 ± 0.032 3.113 ± 0.032 3.109 ± 0.032 3.100+0.033

−0.032 3.097 ± 0.032

ns 0.9685+0.0041
−0.0042 0.9675+0.0034

−0.0038 0.9692 ± 0.0040 0.9675 ± 0.0035 0.9675 ± 0.0041 0.9666 ± 0.0036

"m 0.3098+0.0064
−0.0065 0.3117 ± 0.0024 0.3120 ± 0.0064 0.3158 ± 0.0026 0.3069+0.0065

−0.0071 0.3090 ± 0.0023

H0 67.64+0.50
−0.49 67.52 ± 0.16 67.43 ± 0.49 67.18 ± 0.17 67.92 ± 0.52 67.75 ± 0.14

∑
mν < 0.175 < 0.151 < 0.200 < 0.185 < 0.136 < 0.122

Fig. 1. The one-dimensional marginalized distributions of ∑mν using Planck+BAO+SN (blue) and Planck+BAO+SN+GW (red). (left) NH; (middle) IH; (right) DH. (For interpreta-
tion of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The 68% and 95% CL marginalized contours of
∑

mν , H0, and "m using Planck+BAO+SN (blue) and Planck+BAO+SN+GW (red), for the NH case.

In this work, we add the simulated GW data in the combined 
cosmological data. For the GW standard siren measurement with 
N simulated data points, we can write its χ2 as

χ2
GW =

N∑

i= 1

[
d̄i

L − dL(z̄i; "⃗)

σ̄ i
dL

]2

, (15)

where z̄i , d̄i
L , and σ̄ i

dL
are the ith redshift, luminosity distance, and 

error of luminosity distance of the simulated GW data, and "⃗ rep-
resents the set of cosmological parameters.

To show the constraining capability of the simulated GW data, 
we consider two data combinations for comparison in this work: 
(i) Planck+BAO+SN and (ii) Planck+BAO+SN+GW. For the CMB data, 
we use the Planck 2015 temperature and polarization data. For the 
BAO data, we use the measurements of the six-degree-field galaxy 
(6dFGS) at zeff = 0.106 [49], the SDSS main galaxy sample (MGS) at 

zeff = 0.15 [50], the baryon oscillation spectroscopic survey (BOSS) 
LOWZ at zeff = 0.32 [51], and the BOSS CMASS at zeff = 0.57 [51]. 
For the SN data, we use the “joint light-curve analysis” (JLA) sam-
ple [52]. For the simulated GW data, we consider 1,000 GW events 
that could be observed by the ET in its 10-year observation.

For the neutrino mass measurement in this work, we consider 
three mass hierarchy cases, i.e., the normal hierarchy (NH), the in-
verted hierarchy (IH), and the degenerate hierarchy (DH). For the 
details of this aspect, see Refs. [29,30].

3. Results and discussion

Our constraint results for the neutrino mass and other cosmo-
logical parameters are shown in Table 1 and Figs. 1– 4. Note that in 
this work we have considered three mass hierarchy cases for mas-
sive neutrinos and we have used two data combinations to make 
the analysis.

! Also take ET as an example
! Comparison: Planck+BAO+SN & Planck+BAO+SN+GW
! GW can help reduce upper limits by 14%, 8%, and 10% for NH, IH, and DH,

respectively
! GW can also help break degeneracies between ∑m! and other parameters
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! Precision cosmology era has been coming
☄ Precise measurement of cosmological parameters
☄ Discovery of acceleration of cosmic expansion
☄ Cosmological standard model (6 parameters) has

occurred

Cosmological models should be further extended
Cosmological probes should be further developed

☀ Believe that only six parameters can entirely describe the 
evolution of the universe?

☀ Observations are not accurate enough
☀ Parameter measurement problems:
☀ (i) Inconsistencies between some observations
☀ (ii) Degeneracies between some parameters



! CMB anisotropies (CMB)

! Type Ia supernovae (SNIa)

! Baryon acoustic oscillations (BAO)

! Hubble constant (H0)

! Weak gravitational lensing (WL)

! Clusters of galaxies (CL)

! Redshift-space distortions (RSD)

! Radio observation (neutral hydrogen 21 cm intensity mapping survey: neutral

hydrogen power spectrum, BAO & RSD)

! GW observation (standard sirens: luminosity distance)

Current mainstream probes (expansion
history & structure growth)
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Fig. 1. Observational constraints (68.3% and 95.4% confidence level) on the 
!CDM model by using the CBS, CBS + Euclid, CBS + SKA1, CBS + SKA2 and 
CBS + Euclid + SKA2 data combinations. Here, CBS stands for CMB + BAO + SN and 
H0 is in units of km s−1 Mpc−1.

3. Results and discussion

In this section, we shall report the constraint results and make 
some relevant discussions. We constrain the !CDM, wCDM, and 
CPL models by using the data combinations of CBS, CBS+Euclid, 
CBS+SKA1, CBS+SKA2, and CBS+Euclid+SKA2 to complete our 
analysis. Our main constraint results for cosmological parameters 
are shown in Figs. 1– 3 and summarized in Tables 1– 3. In Figs. 1– 3, 
we display the two-dimensional posterior distribution contours for 
various model parameters constrained at 68% and 95% confidence 
level. In Tables 1– 3, we exhibit the best fitting values with 1σ er-
rors quoted, the constraint errors and the constraint accuracies of 
concerned parameters (i.e., #m , H0, w , w0, and wa) in different 
cosmological models. In the tables, σ (ξ) is the 1σ error of the pa-
rameter ξ , and the constraint precision ε(ξ) for the parameter ξ is 
defined as ε(ξ) = σ (ξ)/ξbf, where ξbf represents the best-fit value.

From Figs. 1– 3, we can clearly find that future Euclid, SKA1, 
and SKA2 observations can significantly improve the constraints 
on almost all the parameters to some different extent, as shown 

Fig. 3. Observational constraints (68.3% and 95.4% confidence level) on the CPL
model by using the CBS, CBS + Euclid, CBS + SKA1, CBS + SKA2 and CBS + Euclid +
SKA2 data combinations. Here, CBS stands for CMB + BAO + SN.

by the green, gray, and red contours. Compared with SKA1 and 
Euclid data, in particular, the SKA2 data possess a much more pow-
erful constraint capability; for more details, see also Tables 1– 3. 
In Fig. 1, we find that the SKA mock data could break the de-
generacy between the matter density and the Hubble constant, 
and further improve the cosmological constraints to a great extent, 
which is consistent with the conclusion in Ref. [18]. Meanwhile, in 
Fig. 2, we also find that the parameter degeneracy orientations of 
CBS+SKA2 and CBS+Euclid evidently differ from that of CBS only 
data combination as shown in the #m– w plane. In other words, 
the Euclid and SKA2 mock data can help to break the parame-
ter degeneracies, in particular between the parameters #m and w
in the wCDM model. In Fig. 3, we also show the constraint re-
sults on the model parameters w0 and wa , and we find that the 
constraining capability of SKA is still powerful, especially for the 
case of SKA2. Apart from that, in all these figures we can appar-
ently see that, the data of Euclid behave much better than SKA1 
but worse than SKA2 in the parameter constraints, which indicates 
that future optical experiment Euclid will become more powerful 
in parameter constraints than the contemporaneous experiment, 
the first phase of SKA (SKA1). But with the development of SKA, 
in its second phase (SKA2) this project will still become the most 
competitive experiment. Thus, in the following, we will focus the 
discussion on the SKA2 mock data.

When adding the SKA2 mock data to the current optical ob-
servations, the CBS datasets, the improvement of the constraint on 
the parameter #m is from 2.65% to 1.00% in the !CDM model, 
from 3.13% to 0.94% in the wCDM model, from 3.32% to 2.19% in 
the CPL model. For the parameter H0, the constraint precision is 

Fig. 2. Observational constraints (68.3% and 95.4% confidence level) on the wCDM model by using the CBS, CBS + Euclid, CBS + SKA1, CBS + SKA2 and CBS + Euclid + SKA2
data combinations. Here, CBS stands for CMB + BAO + SN and H0 is in units of km s−1 Mpc−1.
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Fig. 2, we also find that the parameter degeneracy orientations of 
CBS+SKA2 and CBS+Euclid evidently differ from that of CBS only 
data combination as shown in the #m– w plane. In other words, 
the Euclid and SKA2 mock data can help to break the parame-
ter degeneracies, in particular between the parameters #m and w
in the wCDM model. In Fig. 3, we also show the constraint re-
sults on the model parameters w0 and wa , and we find that the 
constraining capability of SKA is still powerful, especially for the 
case of SKA2. Apart from that, in all these figures we can appar-
ently see that, the data of Euclid behave much better than SKA1 
but worse than SKA2 in the parameter constraints, which indicates 
that future optical experiment Euclid will become more powerful 
in parameter constraints than the contemporaneous experiment, 
the first phase of SKA (SKA1). But with the development of SKA, 
in its second phase (SKA2) this project will still become the most 
competitive experiment. Thus, in the following, we will focus the 
discussion on the SKA2 mock data.

When adding the SKA2 mock data to the current optical ob-
servations, the CBS datasets, the improvement of the constraint on 
the parameter #m is from 2.65% to 1.00% in the !CDM model, 
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! SKA HI 21 cm IM observation can play an important role in helping improve cosmological parameter estimation

! Consider SKA1-MID and SKA2 simulated data (BAO)

! CBS+SKA1: !(w0)=0.08, !(wa)=0.25

! CBS+SKA2: !(w0)=0.05, !(wa)=0.18

! SKA1: constraints on ∑m" are improved by 4%, 3%, and 10% for NH, IH, and DH, respectively

! SKA2: constraints on ∑m" are improved by 7%, 7%, and 16% for NH, IH, and DH, respectively
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! SKA HI 21 cm IM observation can play an important role in help improving cosmological parameter estimation

! Consider SKA1-MID and SKA2 simulated data (BAO)

! CBS+SKA1: !(w0)=0.08, !(wa)=0.25
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Gravitational wave standard siren observation combined with the optical, near-infrared, and 
radio survey observations will greatly promote the development of cosmology
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! Binary neutron star collision observations opened a new era to multi-messenger 

astronomy

! Gravitational wave standard sirens do not depend on the distance ladder (self-

calibration) and measure the absolute distance

! Tension in the Hubble constant measurements: it seems that the extended 

cosmological models cannot resolve the problem

! Future gravitational wave observations may arbitrate the H0 tension

! Standard sirens will be developed into a new cosmological probe in the future: 

breaking parameter degeneracies

! Future gravitational wave observations combined with other survey 

observations: can elucidate the nature of dark energy?
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