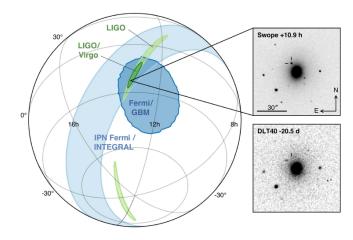


Gravitational waves, dark energy, and massive neutrinos

Xin Zhang Northeastern University


Composite 2019: Hunting New Physics in Higgs, Dark Matter, Neutrinos, Composite Dynamics and Extra-Dimensions 2019.11.21-24 Sun Yat-sen University (SYSU) in Guangzhou, China

Multi-messenger astronomy era

On Aug 17, 2017, LIGO-Virgo detected GW from BNS: Multi-messenger astronomy era

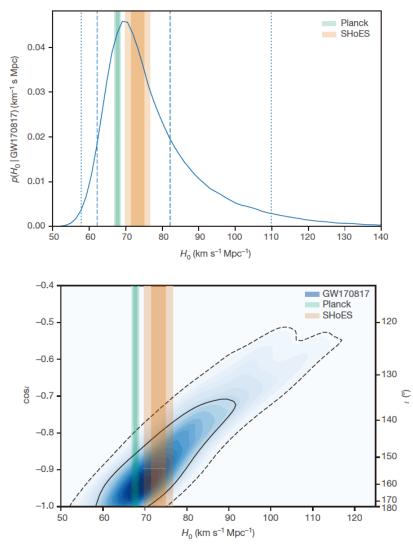
4 astronomical discoveries:

- 🔆 GW170817 (GW)
- 🔶 GRB170817A (GRB)
- 🔆 SSS17a (kilonova)
- ♦ NGC4993 (host galaxy)

500 LIGO - Virgo SAL ESO-NTT SOAR [1] 300-ESO-VLT) 200[.] Ledneuch (-12 -10 -8 400 600 1000 2000 $t-t_c$ (s) wavelength (nm) GW LIGO, Vir γ-ray ermi INTEGRA IN Invident/XMT Swift AGE E CALET HESS. HAWC K X-ray SC. NuSTAR, Chandra, INTEG UV Switt, HST Optical NAMES OF THE OT OF TAXABLE TO TAX IR REM-ROS2, VIS Radio ATCA VIA ASKAP VI BA GMRT MWA LOFAR LWA ATMA OVRO FVN & MERLIN MeerKAT Parkes SRT File -100 -50 0 50 10-1 10-2 100 t-tc (s) t-tc (days) 1M2H Swope DLT40 VISTA Chandra 10.86h 11.08h h 11.24h YJK, 9d X-ray DECam MASTER Las Cumbres **J VLA** W 11.40h iz 11.57h 11.31h 16.4d Radio

ApJ2017, 848: L12

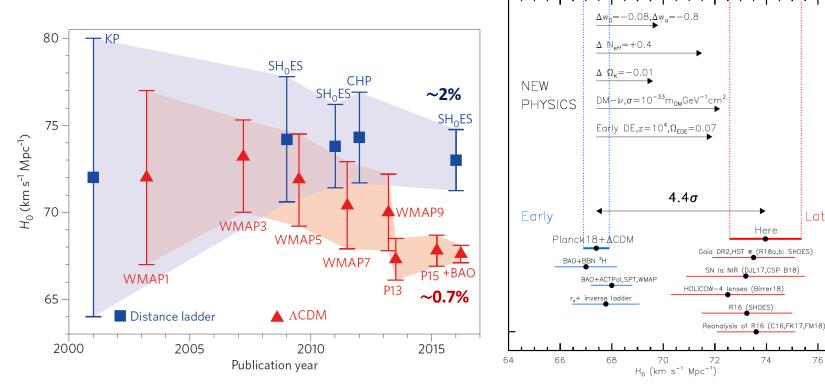
Standard siren and the Hubble constant


- GWs can serve as cosmic "standard sirens": GW's waveform carries information of luminosity distance
- Schutz 1986, Holz & Hughes 2005
- **BNS merger: GW & EMW**
- Multi-messenger: study cosmology
- \bullet Hubble's law: z (small), d \rightarrow H₀
- **i** Independent H₀ measurement
- Advantage: avoid using cosmic distance ladder
- One data: error still large (around 15%)

Hubble flow velocity measurement (peculiar velocity), distance measurement (parameter degeneracy, instrument calibration, et al.)

 $v_{\rm H} = H_0 d$

$$H_0 = 70.0^{+12.0}_{-8.0} \text{ km s}^{-1} \text{ Mpc}^{-1}$$


Inclination angles near 180 degree (cos /=-1) indicate that the orbital angular momentum is antiparallel to the direction from the source to the detector.

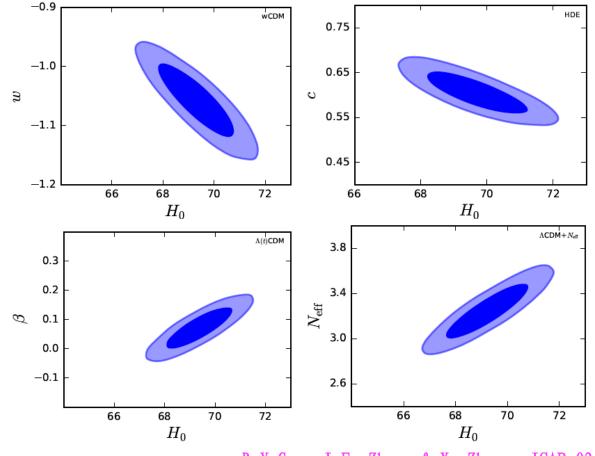
| NATURE | VOL 551 | 2 NOVEMBER 2017

The Hubble constant tension

- The Hubble constant: first cosmological parameter, a century measurement
- **Tension: between early-universe and late-universe measurements**
- One of the most important problems in current cosmology
- **Cosmology at a crossroads**

NATURE ASTRONOMY 1, 0121 (2017) | DOI: 10.1038/s41550-017-0121

Riess et al., Astrophys. J. 876 (2019) 85 [arXiv: 1903. 07603]


Late

76

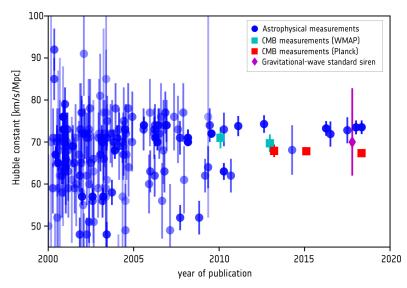
 $H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Can the H₀ tension be resolved in extensions to ACDM cosmology?

- **The H**₀ tension: new physics beyond standard model?
- In some extended models, new parameters positively-correlate or anti-correlate with H₀
- Tightly constrained by current observations
- **Can the H**₀ tension be resolved?

R. Y Guo, J. F. Zhang & X. Zhang, JCAP 02 (2019) 054

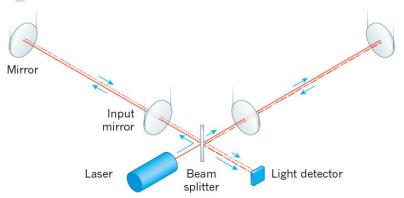
- Single-parameter & multiparameter extensions
- CMB+BAO+SN+H₀ (for obtaining a larger H₀)
- **b** For ΛCDM, still 3σ tension
- HDE & HDE + sterile neutrino, can effectively alleviate tension (1.67σ and 1.11σ), but they are excluded by observations
- ACDM + N_{eff} , looks the best one, 1.87 σ , and it is favored by observations (ΔAIC =-0.242), but if H₀ data is not used, then 2.66 σ tension
- In addition, increasing N_{eff} can increase σ₈ (another tension)
- Conclusion: among these extensions, no one can truly resolve the tension

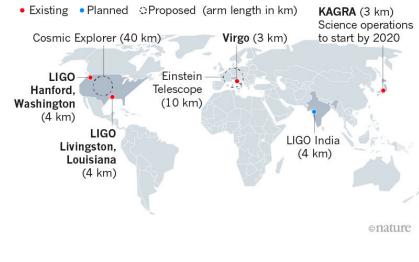

Model	ACDM	$w \mathrm{CDM}$	HDE	$\Lambda(t) ext{CDM}$	$\Lambda { m CDM} + N_{ m eff}$
$\Omega_{ m b}h^2$	$0.02236 {\pm} 0.00014$	$0.02227 \!\pm\! 0.00015$	$0.02243 {\pm} 0.00015$	$0.02226 \!\pm\! 0.00016$	$0.02249 {\pm} 0.00017$
$\Omega_{ m c}h^2$	$0.1180 {\pm} 0.0010$	$0.1191 \!\pm\! 0.0012$	$0.1169 {\pm} 0.0012$	$0.1113\substack{+0.0040\\-0.0041}$	$0.1213 {\pm} 0.0027$
$100 heta_{ m MC}$	$1.04102 {\pm} 0.00030$	$1.04088 \!\pm\! 0.00030$	$1.04114 {\pm} 0.00030$	$1.04087 \!\pm\! 0.00030$	$1.04066 {\pm} 0.00039$
au	$0.071 {\pm} 0.012$	$0.062 {\pm} 0.013$	$0.089 {\pm} 0.014$	$0.068 {\pm} 0.013$	$0.071 {\pm} 0.012$
$\ln(10^{10}A_{\rm s})$	$3.072 {\pm} 0.023$	$3.056\substack{+0.024\\-0.025}$	$3.106 \!\pm\! 0.025$	$3.069 {\pm} 0.023$	$3.080 {\pm} 0.023$
$n_{ m s}$	$0.9688 {\pm} 0.0039$	$0.9658 \!\pm\! 0.0043$	$0.9718 {\pm} 0.0044$	$0.9653 \!\pm\! 0.0048$	$0.9751 \!\pm\! 0.0063$
α	_	$-1.058 {\pm} 0.038$	$0.605\substack{+0.028\\-0.031}$	$0.071\substack{+0.045\\-0.044}$	$3.250 {\pm} 0.150$
σ_8	$0.817 {\pm} 0.009$	$0.830 \!\pm\! 0.012$	$0.826 \!\pm\! 0.012$	$0.844 \!\pm\! 0.019$	$0.826 \!\pm\! 0.011$
$H_0 \; [\rm km/s/Mpc]$	$68.09 {\pm} 0.45$	$69.34 {\pm} 0.93$	$69.67\substack{+0.95\\-0.94}$	$69.36 {\pm} 0.82$	69.25 ± 0.99
H_0 tension	2.72σ	1.85σ	1.67σ	1.88σ	1.87σ
$\chi^2_{ m min}$	13665.722	13664.486	13683.562	13664.782	13663.480
ΔAIC	0	0.764	19.840	1.060	-0.242

Model	CPL	$\Lambda {\rm CDM}{+}{\sum}m_{\nu}{+}N_{\rm eff}$	$\Lambda {\rm CDM}{+}N_{\rm eff}{+}m_{\nu,{\rm sterile}}^{\rm eff}$	${\rm HDE}{+}N_{\rm eff}{+}m_{\nu,{\rm sterile}}^{\rm eff}$
$\Omega_{ m b}h^2$	$0.02224 {\pm} 0.00015$	$0.02254 {\pm} 0.00018$	$0.02255\substack{+0.00017\\-0.00019}$	$0.02268\substack{+0.00020\\-0.00022}$
$\Omega_{ m c}h^2$	$0.1195 {\pm} 0.0013$	$0.1216\substack{+0.0027\\-0.0028}$	$0.1209 \!\pm\! 0.0030$	$0.1209\substack{+0.0035\\-0.0028}$
$100\theta_{\mathrm{MC}}$	$1.04084 {\pm} 0.00031$	$1.04060 \!\pm\! 0.00040$	$1.04064\substack{+0.00043\\-0.00039}$	$1.04067\substack{+0.00041\\-0.00040}$
au	$0.058\substack{+0.015\\-0.014}$	$0.078\substack{+0.014\\-0.015}$	$0.079\substack{+0.014\\-0.015}$	$0.098 {\pm} 0.014$
$\ln(10^{10}A_{\rm s})$	$3.049 {\pm} 0.027$	$3.094\substack{+0.027\\-0.030}$	$3.096\substack{+0.027\\-0.029}$	$3.134 {\pm} 0.029$
$n_{ m s}$	$0.9648 {\pm} 0.0045$	$0.9775 \!\pm\! 0.0068$	$0.9771\substack{+0.0069\\-0.0078}$	$0.9833\substack{+0.0085\\-0.0088}$
$w/w_0/c$	-1.000 ± 0.100	_	_	$0.627\substack{+0.035\\-0.041}$
w_a	$-0.240^{+0.410}_{-0.340}$	_	_	_
$\sum m_{\nu} [\text{eV}]$	_	< 0.22	-	—
$N_{ m eff}$	_	$3.290 {\pm} 0.160$	< 0.357	< 0.366
$m_{\nu, \text{sterile}}^{\text{eff}} [\text{eV}]$	_	-	< 0.359	< 0.245
σ_8	$0.830 {\pm} 0.012$	$0.820 {\pm} 0.012$	$0.819\substack{+0.019\\-0.013}$	$0.828\substack{+0.017\\-0.013}$
$H_0 \; [{\rm km/s/Mpc}]$	$69.19\substack{+0.97 \\ -0.96}$	$69.20 {\pm} 1.00$	$69.06\substack{+0.82\\-1.17}$	70.70 ± 1.10
H_0 tension	1.90σ	1.89σ	1.88σ	1.11σ
$\chi^2_{ m min}$	13663.216	13665.614	13663.428	13681.998
ΔAIC	1.494	3.892	1.706	22.276

R. Y Guo, J. F. Zhang & X. Zhang, JCAP 02 (2019) 054

GW can arbitrate the H₀ measurements

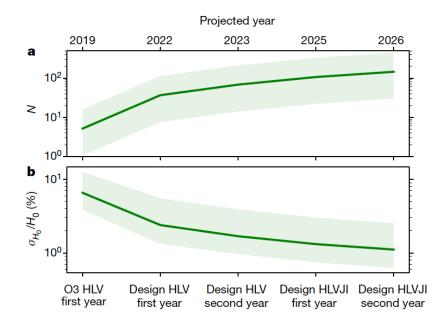

- Need a third party to make an arbitration
- GW standard sirens: pure distance measurement, avoiding complex astrophysical distance ladder and poorly understood calibration process
- Self-calibration (directly calibrated by theory)
- Currently, only one data, about 15% error
- H₀: 15%/ \sqrt{N} , N is the event number of BNS mergers detected by LIGO-Virgo
- N=50, about 2% error
- + KAGRA & LIGO-India: $13\%/\sqrt{N}$
- Future 3rd generation ground-based GW detectors: CE & ET



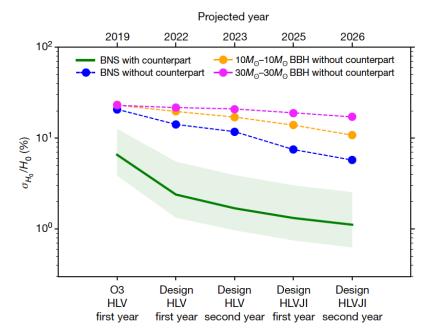
400 Hz - 30 Hz GROUND-BASED INTERFEROMETER

Current observatories such as LIGO can detect waves that are longer than the detectors' lengths (3-4 kilometres), corresponding to periods of a few hundredths to a few thousandths of a second.

MAP OF GROUND-BASED INTERFEROMETERS

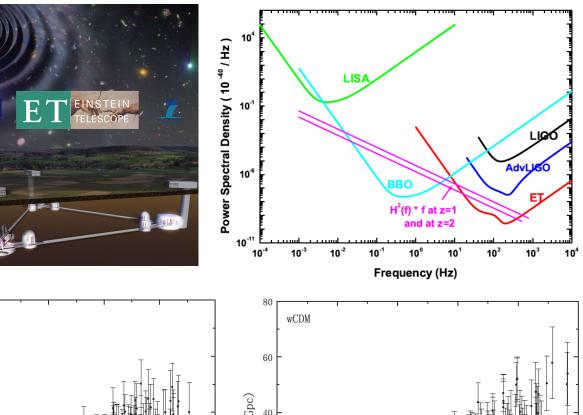


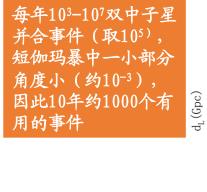
A two per cent Hubble constant measurement from standard sirens within five years


Hsin-Yu Chen^{1,2}*, Maya Fishbach² & Daniel E. Holz^{2,3,4}

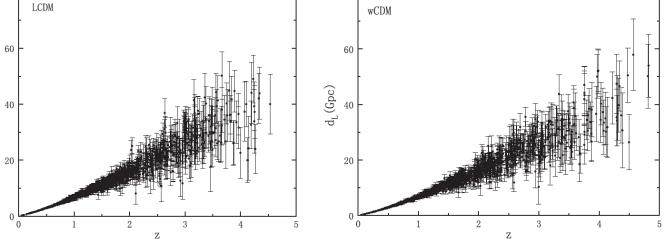
25 OCTOBER 2018 | VOL 562 | NATURE | 545

- 2% in 5 years, and 1% in 10 years
- In 2023, 50 events, 2%; In 2026, 100 events, about 1.3%
- **BBH**, no EM counterpart, but statistical method can be used


Projected number of BNS detections and corresponding fractional error for the standard siren H_0 measurement

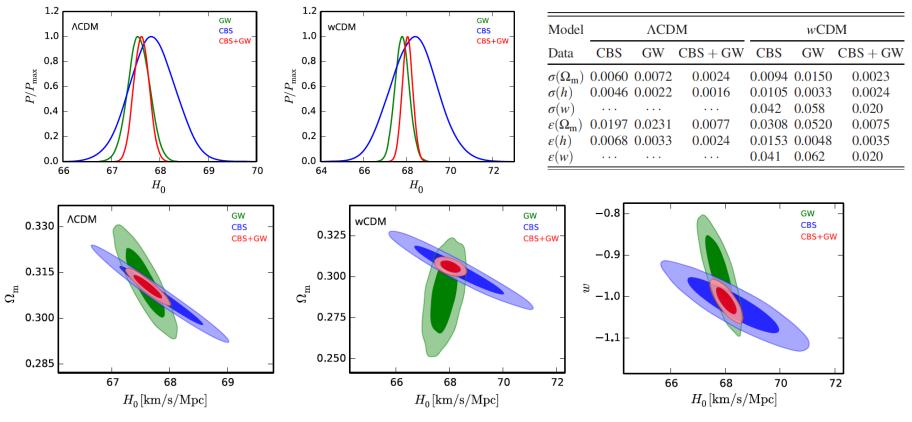


Projected fractional error for the standard siren ${\rm H}_0$ measurement for BNSs and BBHs for future GW detector network


Einstein Telescope

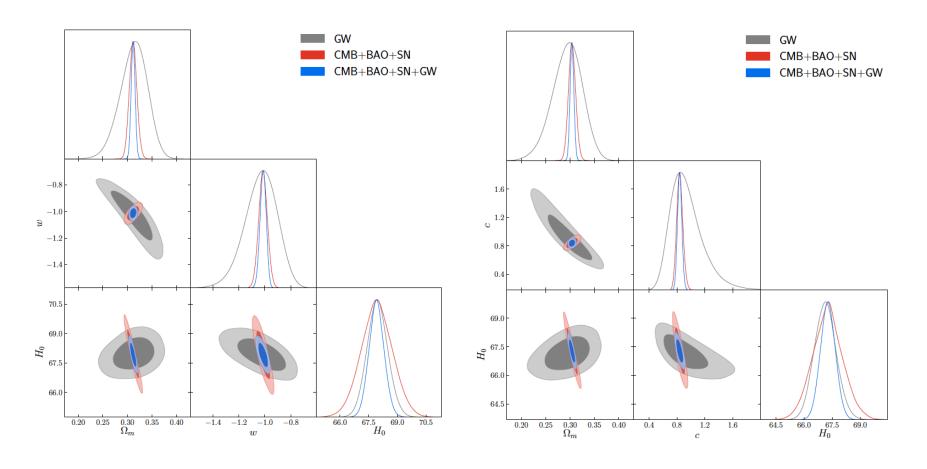
- 3rd generation ground-based
- 100-200 meters underground
- Armlength 10 km
- 3 detectors
- About 1000 standard sirens in 10 years

80



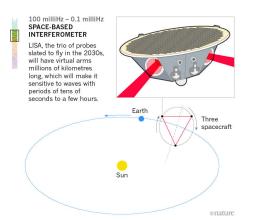
It is expected that standard sirens would be developed into a powerful cosmological probe in the future

GW standard sirens: Cosmological parameter estimation (dark energy)

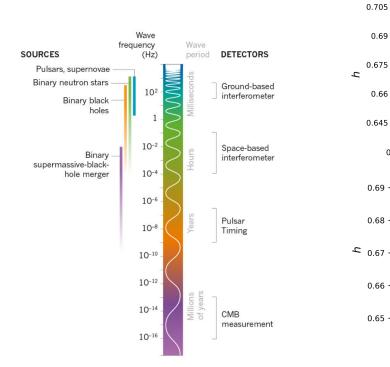

X. N. Zhang, L. F. Wang, J. F. Zhang & X. Zhang, Phys. Rev. D 99 (2019) 063510 [arXiv: 1804.08379]

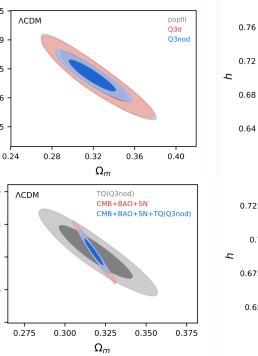
- Standard sirens: H₀ good (ACDM 0.3%, wCDM 0.5%), other parameters not good
- But self-calibration, absolute distance measurement, can break parameter degeneracies, rather meaningful for parameter measurements
- \bullet wCDM: in H₀- Ω_m plane, roughly orthogonal
- w also not good (12%) by GW, and 4% by current CBS; degeneracy broken: w 2% by combined data
- GW combined with future survey projects, can elucidate the nature of DE?

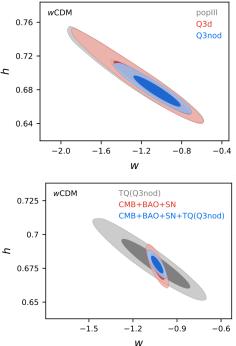
Constraints on DE models from future GW observation: Examples


J. F. Zhang, M. Zhang, S. J. Jin, J. Z. Qi & X. Zhang, JCAP 1909 (2019) 068 [arXiv:1907.03238] J. F. Zhang, H. Y. Dong, J. Z. Qi & X. Zhang, arXiv:1906.07504

HDE模型

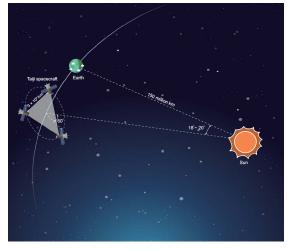

wCDM模型

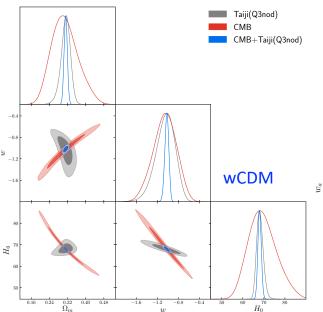

Space-based GW detectors

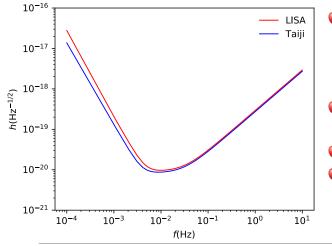


- Frequency range: 10⁻⁴ Hz 1 Hz
- Supermassive black hole (galaxy center) coalescence
- **Extreme mass ratio inspiral (EMRI)**
- China's projects: Taiji & TianQin
- Merger events: uncertainty large
- **SMBH formation and growth: 3 models**

Forecast for TianQin (standard sirens)

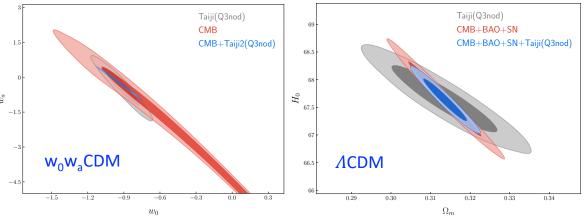





L. F. Wang, Z. W. Zhao, J. F. Zhang & X. Zhang, 1907.01838

Space-based GW detectors

Taiji project, W. R. Hu & Y. L. Wu, Natl. Sci. Rev. 4 (2017) 685



	Preliminary mission proposal of Taiji	LISA	eLISA
Arm length	$3 \times 10^9 m$	$5 \times 10^9 m$	$1 \times 10^9 m$
1-way position noise budget	$5\sim 10\mathrm{pm}\mathrm{Hz}^{-rac{1}{2}}$	$18 \mathrm{pm} \mathrm{Hz}^{-\frac{1}{2}}$	$11 \text{pm} \text{Hz}^{-\frac{1}{2}}$
Laser power	2 W	2 W	2 W
Telescope diameter	$\sim 50~{ m cm}$	40 cm	20 cm

- GW space observation's constraint capability for cosmological parameters is weak (sources rare, WL)
- Constraints on DE still meaningful
- Standard sirens
- Parameter degeneracies broken

Forecast for Taiji (standard sirens)

Z. W. Zhao, L. F. Wang, J. F. Zhang & X. Zhang, in preparation

Neutrino oscillations: beyond SM

PMNS Matrix

ν_u

ν.

 $(m_{2})^{2}$

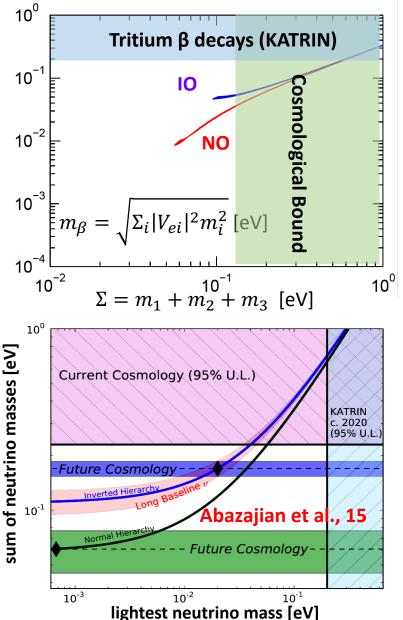
 $(m_{2})^{2}$

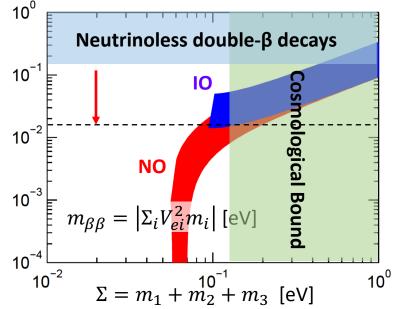
 $(m_1)^2$

 (Δm^2)

normal hierarchy

 $(\Delta m^2)_{atm}$


inverted hierarchy


$$V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\theta_{23} \sim 45^{\circ} \qquad \theta_{13} \sim 9^{\circ} \qquad \theta_{12} \sim 34^{\circ}$$

$$|\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \qquad \delta \sim ? \qquad \Delta m_{21}^2 \sim 8 \times 10^{-5} \text{ eV}^2$$

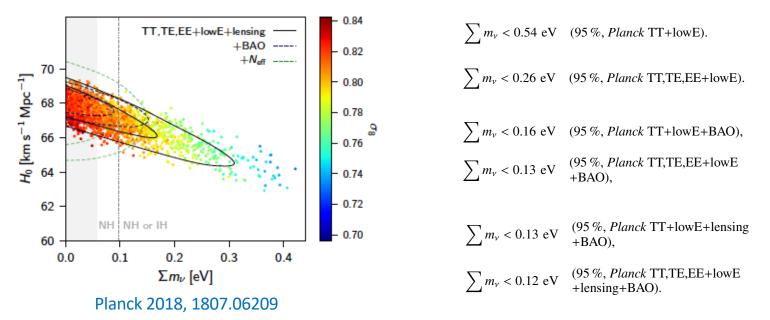
Atmospheric,
LBL accelerator
$$Reactor, \qquad Solar, \\ LBL accelerator \qquad Solar, \\ LBL accelerator \qquad Solar, \\ LBL accelerator \qquad \Delta m_{21}^2 \equiv m_2^2 - m_1^2 = 7.5 \times 10^{-5} \text{ eV}^2, \\ |\Delta m_{31}^2| \equiv |m_3^2 - m_1^2| = 2.5 \times 10^{-3} \text{ eV}^2.$$

$$\Phi \text{ Have known some basic facts about neutrinos}$$

Some parameters have been precisely measured

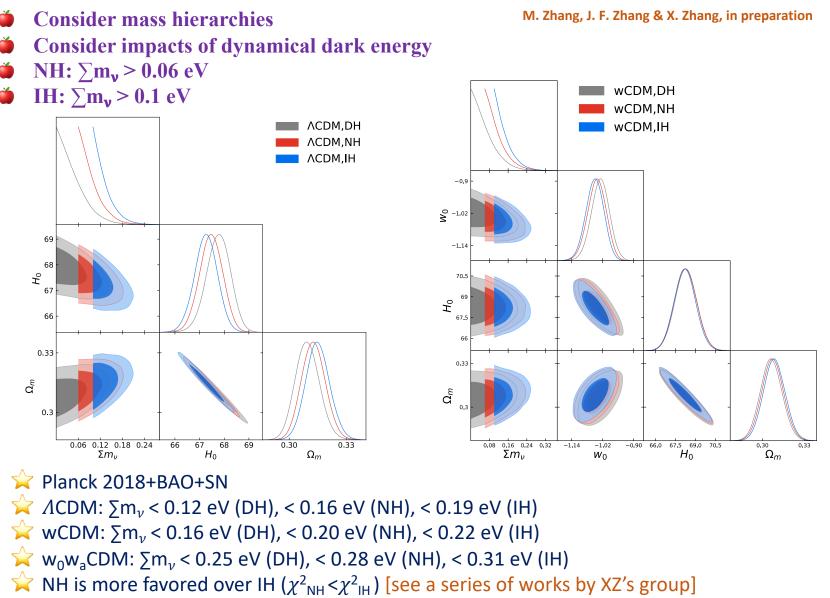
- **Neutrino mass ordering?**
- **Absolute masses of neutrinos?**
- Particle physics experiments are difficult to measure the neutrino masses
- **Cosmology is important for neutrino mass** Ó measurement

Neutrino mass measurements

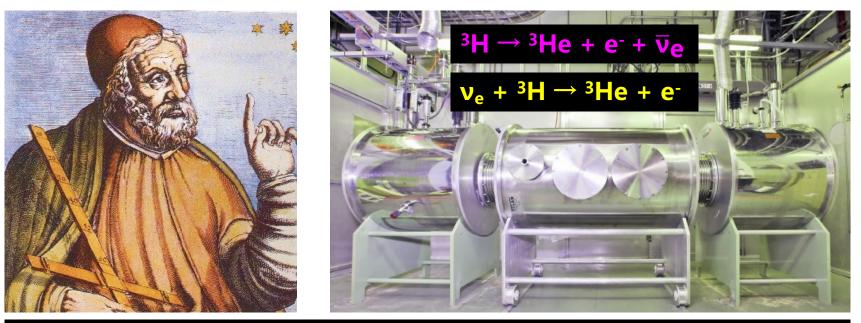

Constraints on absolute neutrino masses

- Tritium β decays (90% CL) $m_{\beta} < 1.1$ eV (KATRIN, first result 2019)
- Neutrinoless double-β decays (90% CL) $m_{\beta\beta} < (0.05 \sim 0.16)$ eV (KamLAND-Zen)
 - (0.17~0.49) eV (EXO)
 - (0.12~0.26) eV (GERDA)
 - (0.11~0.50) eV (CUORE)
- Cosmological observations (95% CL) $\Sigma m_{\nu} < 0.12 \text{ eV}$ (Planck)

Taken from Shun Zhou


Planck 2018 constraints on neutrino mass

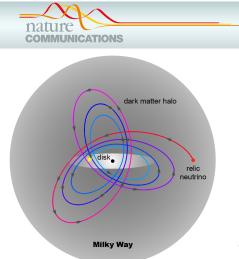
- Constraints on the total neutrino mass
- **Degenerate mass model (m₁=m₂=m₃); mass splittings are neglected**
- New tighter constraint on optical depth leads to tighter constraints on neutrino mass
- **b** Both polarization and lensing tighten the constraints



- $\sum m_{v}$ is in anti-correlation with H₀: Adding H₀ measurement will tighten mass constraints, but this is due to Hubble tension
- This anti-correlation is changed if dynamical dark energy is considered [X. Zhang, Phys. Rev. D 93 (2016) 083011, arXiv:1511.02651]
- Dynamical dark energy affects the constraints on neutrino mass greatly [X. Zhang, Sci. China Phys. Mech. Astron. 60 (2017) 060431, arXiv:1703.00651]
- Tight limit of $\sum m_v < 0.12 \text{ eV}$ puts pressure on IH ($\sum m_v > 0.1 \text{ eV}$)
- Solution Consistent with constraints from neutrino laboratory experiments which also slightly prefer NH at 2-3 σ

Planck 2018 constraints on neutrino mass

Detection for cosmic neutrino background

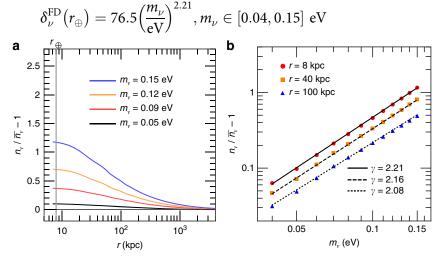


PTOLEMY Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield (Betts et al, arXiv:1307.4738)

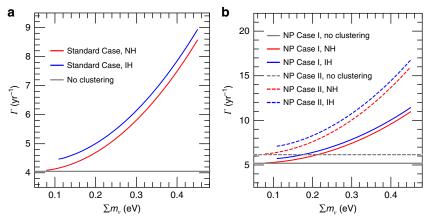
- **Cosmic relic neutrinos: decoupled from thermal bath at 1s when T was 1MeV**
- **Current: 56 cm⁻³ for each flavor**
- **PTOLEMY: the first experiment**
- **100 g of tritium, graphene target, planned energy resolution 0.15 eV**
- Majorana vs. Dirac
- CvB capture rate: 4 yr⁻¹ (Dirac), 8 yr⁻¹ (Majorana)
- Can constrain neutrino mass
- Massive neutrinos: gravitational clustering in the MW? Impacts on the experiment?

Gravitational clustering of cosmic relic neutrinos in the Milky Way

J. Zhang & X. Zhang, Nature Communications [arXiv: 1712.01153]



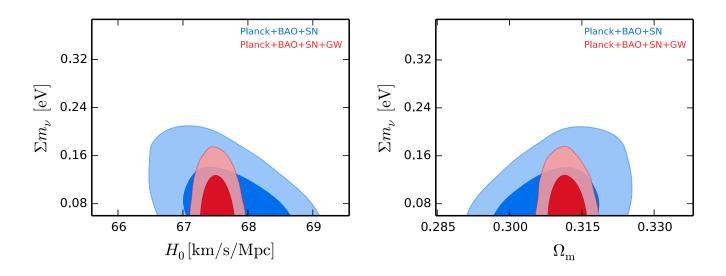
- Detect cosmic relic neutrinos in the vicinity of the Earth
- Necessary to evaluate the gravitational clustering effects on relic neutrinos in the MW
- Develop a reweighting technique in the N-one-body simulation
- A single simulation can yield neutrino density profiles for different neutrino masses and phase space distributions
- Current observations: small neutrino masses
- Neutrino number density contrast around the Earth is found to be almost proportional to the square of neutrino mass


$$\frac{\mathrm{d}r}{\mathrm{d}z} = -\frac{u_r}{\mathrm{d}a/\mathrm{d}t}, \quad \frac{\mathrm{d}u_r}{\mathrm{d}z} = -\frac{1}{\mathrm{d}a/\mathrm{d}t} \left(\frac{u_\theta^2}{r^3} - a^2 \frac{\partial\phi}{\partial r}\right)$$

$$dw = 8\pi^2 T_{\nu,0}^3 \int_{r_a}^{r_b} r^2 dr \int_{y_a}^{y_b} f(y) y^2 dy \int_{\psi_a}^{\psi_b} \sin \psi \, d\psi$$

- The equations of motions can be written in a form . independent of neutrino mass
- Neutrino mass is in the lower limit (y_a) and upper limit (y_b) of the associated weight
- Only need to perform a benchmark simulation with definite neutrino mass and phase space distribution

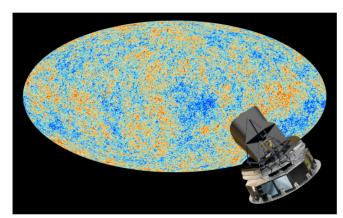
Clustering of thermal relic neutrinos in the MW

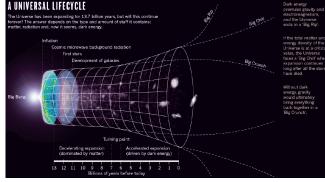


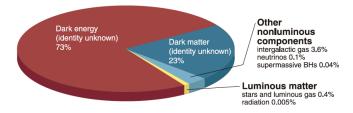
Capture rate Γ in the PTOLEMY experiment

The fitted power-law function for thermal relic neutrinos

GW standard sirens: Cosmological parameter estimation (neutrino mass)

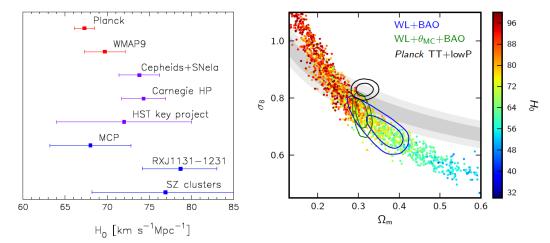

L. F. Wang, X. N. Zhang, J. F. Zhang & X. Zhang, Phys. Lett. B 782 (2018) 87 [arXiv:1802.04720]




GW can improve constraints on neutrino mass by about 10%

- Also take ET as an example
- Comparison: Planck+BAO+SN & Planck+BAO+SN+GW
- GW can help reduce upper limits by 14%, 8%, and 10% for NH, IH, and DH, respectively
- **GW** can also help break degeneracies between $\sum m_{\nu}$ and other parameters

Precision cosmology era



Precision cosmology era has been coming

- Precise measurement of cosmological parameters
- Discovery of acceleration of cosmic expansion
- Cosmological standard model (6 parameters) has occurred
- Believe that only six parameters can entirely describe the evolution of the universe?
- Observations are not accurate enough
- Parameter measurement problems:
- (i) Inconsistencies between some observations
- (ii) Degeneracies between some parameters

Cosmological models should be further extended Cosmological probes should be further developed

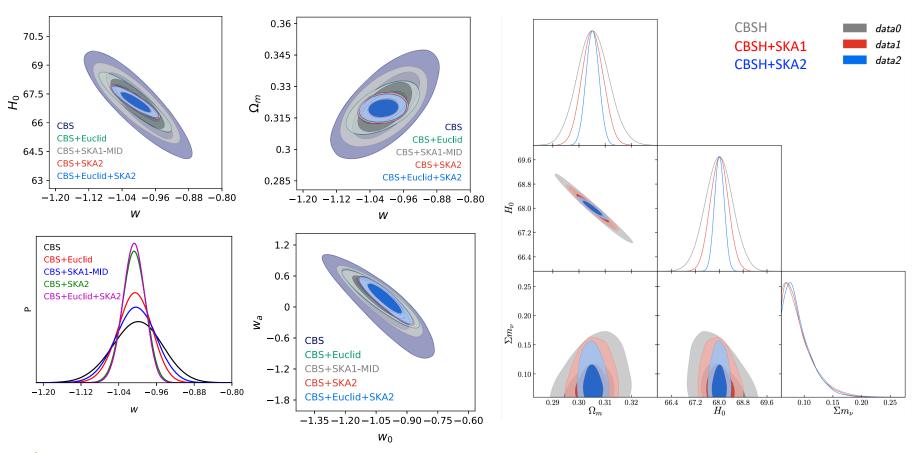
Cosmological probes

Current mainstream probes (expansion history & structure growth)

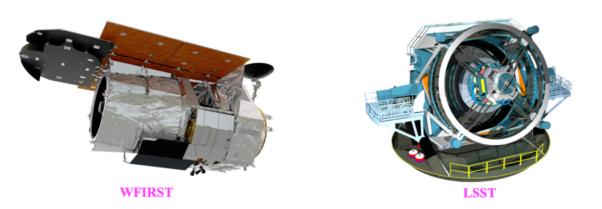
- CMB anisotropies (CMB)
- 🍑 Type Ia supernovae (SNIa)
- Baryon acoustic oscillations (BAO)
- **i** Hubble constant (H₀)
- Weak gravitational lensing (WL)
- **Clusters of galaxies (CL)**
- Redshift-space distortions (RSD)

未来10-15年的光学和近红外巡天项目(光谱,成像)

Project	Dates	$\rm Area/deg^2$	Data	Spec_z Range	Methods
BOSS	2008-2014	10,000	Opt-S	$0.3 - 0.7 \; (gals)$	BAO/RSD
				$2-3.5~({ m Ly}lpha{ m F})$	
DES	2013-2018	5000	Opt-I		WL/CL
					SN/BAO
eBOSS	2014-2020	7500	Opt-S	$0.6-2.0~(\mathrm{gal/QSO})$	BAO/RSD
				$2-3.5~({ m Ly}lpha{ m F})$	
SuMIRE	2014 - 2024	1500	Opt-I		WL/CL
			Opt/NIR-S	0.8 - 2.4 (gals)	BAO/RSD
HETDEX	2014-2019	300	Opt-S	1.9 < z < 3.5 (gals)	BAO/RSD
DESI	2019-2024	14,000	Opt-S	$0 - 1.7 \;(\text{gals})$	BAO/RSD
				$2-3.5~({ m Ly}lpha{ m F})$	
LSST	2020-2030	20,000	Opt-I		WL/CL
					SN/BAO
Euclid	2020-2026	15,000	Opt-I		WL/CL
			NIR-S	$0.7 - 2.2 \; (gals)$	BAO/RSD
WFIRST	2024-2030	2200	NIR-I		WL/CL/SN
			NIR-S	$1.0 - 3.0 \; (gals)$	BAO/RSD


PDG(rev), CPC2016

Future new cosmological probes


- Radio observation (neutral hydrogen 21 cm intensity mapping survey: neutral hydrogen power spectrum, BAO & RSD)
- GW observation (standard sirens: luminosity distance)

SKA 21 cm IM: Cosmological parameter estimation (DE & neutrino mass)

J. F. Zhang, L. Y. Gao, D. Z. He & X. Zhang, Phys. Lett. B 799 (2019) 135064 [arXiv:1908.03732] J. F. Zhang, B. Wang & X. Zhang, arXiv:1907.00179

- SKA HI 21 cm IM observation can play an important role in helping improve cosmological parameter estimation
 Consider SKA1-MID and SKA2 simulated data (BAO)
- CBS+SKA1: $\sigma(w_0)=0.08$, $\sigma(w_a)=0.25$
- CBS+SKA2: $\sigma(w_0)=0.05$, $\sigma(w_a)=0.18$
- SKA1: constraints on $\sum m_{\nu}$ are improved by 4%, 3%, and 10% for NH, IH, and DH, respectively
- SKA2: constraints on $\sum m_{\nu}$ are improved by 7%, 7%, and 16% for NH, IH, and DH, respectively

Euclid

SKA

Gravitational wave standard siren observation combined with the optical, near-infrared, and radio survey observations will greatly promote the development of cosmology

Summary

- Binary neutron star collision observations opened a new era to multi-messenger astronomy
- Gravitational wave standard sirens do not depend on the distance ladder (selfcalibration) and measure the absolute distance
- Tension in the Hubble constant measurements: it seems that the extended cosmological models cannot resolve the problem
- **•** Future gravitational wave observations may arbitrate the H₀ tension
- Standard sirens will be developed into a new cosmological probe in the future: breaking parameter degeneracies
- Future gravitational wave observations combined with other survey observations: can elucidate the nature of dark energy?

SCIENCE CHINA **Physics**, Mechanics & Astronomy Volume 62 - Number 12 December 2019

Science China Physics, Mechanics & Astronomy

- **Editor's Focus:** aim at PRL quality, fast channel
- 34 days from submission to acceptance on average ٠
- **Online immediately** ٠
- Highlighted at EurekAlert and other public media

Scan the QR code Get the news

Scientia Sinica Physica, Mechanica & Astronomica

- Since 1950, in Chinese
- Indexed in Scopus, ESCI, etc. •
- **Special topic** is encouraged, published over 60 special topics ٠

国家自然科学基金委员

Supervised by 中國科学院

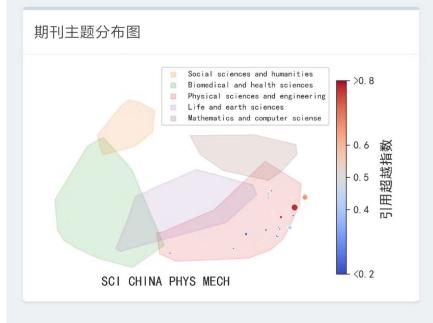
3.986

IMPACT | Q1

Sponsored by

中國科学院

Published by



2019年期刊(现)分区

刊名	Science China-Physics Mechanics & Astronomy					
ISSN	1674-7348		Review	否	收录	SCIE
		学科				分区
大类	!	物理				1
小类 PHYSICS, M			MULTIDISCIPLINARY			1

中科院分区一区 大类、小类都是一区

