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Searches for Sterile Neutrinos at Future Electron-Proton Colliders Oliver Fischer

1. Introduction

Figure 1: Particle content of the SM [1], including the quarks and leptons, the gauge bosons, and the Higgs
boson. The missing right-chiral counterparts of the neutrinos is indicated pictorially.

The observation of neutrino oscillations requires two mass splittings between the three active neu-
trinos, which in turn implies that at least two of the active neutrino species must have non-zero
masses. Since the Standard Model (SM) does not contain neutrino masses, neutrino oscillations
are evidence for physics beyond the SM (BSM).

The neutrino masses can easily be realised with Yukawa interactions, when the SM field con-
tent, cf. fig. 1 is “completed” with a number of right-handed neutrinos [2, 3, 4, 5]. Such new
particles would be completely neutral with respect to the SM gauge group, which is why we will
refer to them as sterile neutrinos from now on. Their lack of quantum numbers also allows for mass
terms that mix up only the sterile neutrinos, such that the mass matrix for the neutral fermions con-
tains the Dirac-type masses that emerge after breaking of the electroweak symmetry as well as the
Majorana-like masses of the sterile neutrinos.

New physics models with sterile neutrinos have very attractive features: they can address the
dark matter (DM) problem in minimal models, for instance the nMSM (see e.g. ref. [6, 7]), or in
slightly expanded versions (see e.g. ref. [8]); they allow for leptogenesis at the GUT scale (see e.g.
refs. [9, 10]), the TeV scale (see e.g. refs. [11, 12, 13, 14]), and even for low masses [15, 16, 17];
they account for the light neutrinos’ masses and mixings. See e.g. ref. [18] for a review on the
phenomenology of sterile neutrinos in the early universe, and ref. [19] for an overview of searches
for sterile neutrinos at particle colliders.

2. The type I seesaw mechanism

When a number of right-handed or sterile neutrinos are added to the field content of the SM, the
diagonalisation of the mass matrix for the active and the sterile neutrinos yields a number of mass
eigenstates. This is commonly referred to as the type I seesaw mechanism.

In order to understand how it works, we consider the “naïve” version of this mechanism, with
exactly one active and one sterile neutrino, with a Dirac mass mD = |yn |vEW, where yn and vEW are
the neutrino Yukawa coupling and the Higgs vacuum expectation value, respectively, and the sterile

1

Fig: Oliver & Stefan

The Standard Model can not explain some mysterious 

• The observation of neutrino 
oscillation  indicates non zero 
mass, but in SM model, neutrino 
only has left-hand chirality.

• Many evidences of dark matter 
exit, such as galaxy rotation 
curves, gravitational lensing and 
CMB observation. What is it?

• Surely active neutrino cannot be 
the major component of DM, but 
we can construct BSMs for both.
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 Neutrino  Global Fit
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 4.7)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.310+0.013
−0.012 0.275 → 0.350 0.310+0.013

−0.012 0.275 → 0.350

θ12/
◦ 33.82+0.78

−0.76 31.61 → 36.27 33.82+0.78
−0.76 31.61 → 36.27

sin2 θ23 0.580+0.017
−0.021 0.418 → 0.627 0.584+0.016

−0.020 0.423 → 0.629

θ23/
◦ 49.6+1.0

−1.2 40.3 → 52.4 49.8+1.0
−1.1 40.6 → 52.5

sin2 θ13 0.02241+0.00065
−0.00065 0.02045 → 0.02439 0.02264+0.00066

−0.00066 0.02068 → 0.02463

θ13/
◦ 8.61+0.13

−0.13 8.22 → 8.99 8.65+0.13
−0.13 8.27 → 9.03

δCP/
◦ 215+40

−29 125 → 392 284+27
−29 196 → 360

∆m2
21

10−5 eV2 7.39+0.21
−0.20 6.79 → 8.01 7.39+0.21

−0.20 6.79 → 8.01

∆m2
3ℓ

10−3 eV2 +2.525+0.033
−0.032 +2.427 → +2.625 −2.512+0.034

−0.032 −2.611 → −2.412
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 9.3)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.310+0.013
−0.012 0.275 → 0.350 0.310+0.013

−0.012 0.275 → 0.350

θ12/
◦ 33.82+0.78

−0.76 31.61 → 36.27 33.82+0.78
−0.75 31.62 → 36.27

sin2 θ23 0.582+0.015
−0.019 0.428 → 0.624 0.582+0.015

−0.018 0.433 → 0.623

θ23/
◦ 49.7+0.9

−1.1 40.9 → 52.2 49.7+0.9
−1.0 41.2 → 52.1

sin2 θ13 0.02240+0.00065
−0.00066 0.02044 → 0.02437 0.02263+0.00065

−0.00066 0.02067 → 0.02461

θ13/
◦ 8.61+0.12

−0.13 8.22 → 8.98 8.65+0.12
−0.13 8.27 → 9.03

δCP/
◦ 217+40

−28 135 → 366 280+25
−28 196 → 351

∆m2
21

10−5 eV2 7.39+0.21
−0.20 6.79 → 8.01 7.39+0.21

−0.20 6.79 → 8.01

∆m2
3ℓ

10−3 eV2 +2.525+0.033
−0.031 +2.431 → +2.622 −2.512+0.034

−0.031 −2.606 → −2.413

Table 1. Three-flavour oscillation parameters from our fit to global data. The numbers in the 1st
(2nd) column are obtained assuming NO (IO), i.e., relative to the respective local minimum. Note
that ∆m2

3ℓ ≡ ∆m2
31 > 0 for NO and ∆m2

3ℓ ≡ ∆m2
32 < 0 for IO. The results shown in the upper

(lower) table are without (with) adding the tabulated SK-atm ∆χ2.

Except for sin2 θ23 and δCP the ∆χ2 shapes are close to parabolic, indicating that the

χ2 approximation for the distribution should hold to good accuracy. The Monte Carlo

studies performed in refs. [11, 32] indicate that also for sin2 θ23, δCP and the mass ordering

the χ2 approximation gives a reasonable estimate of the corresponding confidence level.

Therefore, the ∆χ2 values given below can be converted into an approximate number of

standard deviations by the
√

∆χ2 rule.

– 6 –

The Global data fit 3 active neutrino oscillation with parameters: 

Gonzalez-Garcia et al., 2019; Capozzi et al., 
2018; Forero et al. 2017

✓12, ✓23, ✓13, �, �m2
21, �m2

32(31)
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Normal  or Inverted Ordering

 4

15/11/2019 15(28mass.png 434×371 pixels

Page 1 of 1http://inspirehep.net/record/1402616/files/mass.png

Fig: Adv.High Energy Phys. 2016

Many existing experiments, like NOvA, MINOS, JUNO etc. can 
not determine the sign of                  ; At least 2 neutrinos 
are massive and          seems to be allowed.

�m2
32 = �m2

A < 0

�m2
21 = �m2

� > 0

m2 = (m2
3 +�m2

23)
1
2

�m2
31 = �m2

A > 0

�m2
21 = �m2

� > 0

m2 = (m2
1 +�m2

21)
1
2

CMB data 95% C.L. limit:

⌃jmj < (0.340� 0.715) eV

�m2
31 or �m2

32

m1 = 0
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Type -I and III

mechanism because of the trilinear scalar interaction χ3. Note also that it is an explicit

two-loop realization of the unique dimension-five operator νiνjφ0φ0 [36, 37].

νi νjχk χl

N N
χm

S Sφ0 φ0

Figure 2: Two-loop generation of neutrino mass.

The neutrino mass matrix is then approximately given by

(Mν)ij =
v2

512π4

∑

k,l,m

hikhjlµklm

[

f 2
1 f3m

(Meff )2
+

f 2
2 f4mm

2
N

(M ′
eff )

4

]

. (10)

For illustration, let h = 0.003, f = 0.36, µ = 100 GeV and M = M ′ = mN = 1 TeV, then

neutrino masses are of order 0.1 eV, and flavor changing radiative decays such as µ → eγ

(which depend crucially on h) are well below experimental bounds [29]. [On the other hand,

there is enough freedom in the choice of the above couplings to allow them to be observable

in the near future as well.]

Let χ1 be the lightest of χ1,2,3, then it is a suitable dark-matter candidate in the same

way as the Z2 candidate D [16]. In addition, χi may be discovered through the decay

E → liχj (11)

and χ2 → χ1l
+
i l

−
j , etc. Another important feature of this model is the mixing between S

and N through ⟨φ0⟩ = v/
√
2. This allows the decay of the heavier mass eigenstate N2 into

the lighter N1, i.e.

N2 → N1Z, (12)

5

< H > < H >

Type -II

N3N

< H > < H >

Radiative Seesaw

�

⌫L ⌫L

(a) Type I and III seesaw: heavy right-handed neutrino, as 
singlet for I and triplet for III; MN is usually related to GUT.

(b) Type II seesaw: scalar triplet,               term violating 
lepton number:

(c) Radiative seesaw: exotic particles at TeV scale, 
testable at LHC; Natural symmetry may ensure DM.

µ�

⇥
MN

µ� ⌧ 1
H

T
i�2�†

H

Other ideas:  Inverse, linear or double seesaw, etc.
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Two-loop seesaw with DM
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Fermion Fields Scalar Fields Inert Scalar Fields

LL e
R

L
0
L/R

�L/R NL/R H H
0 � ' s ⌘ s

0
⌘

0

SU(2)L 2 1 2 1 1 2 2 3 1 1 2 1 2

U(1)Y �
1
2 �1 �

1
2 0 0 1

2
1
2 1 0 0 1

2 0 1
2

U(1)H 0 0 2x x y 0 �3x �3x �3x �2x x x + y �2x + y

TABLE I: Contents of fermion and scalar fields and their charge assignments under SU(2)L ⇥

U(1)Y ⇥ U(1)H , where all the new fields are singlets under SU(3)C , and all the quark fields are

neutral under U(1)H . Note that the H
0 field can only present for the one-loop radiative seesaw.

Flavour Violations (LFVs), muon anomalous magnetic moment (�aµ, aka muon g � 2), and

the DM relic density.

This paper is organized as follows. In Sec. II, we show the valid Lagrangian with charge

assignments, and formulate the scalar and neutrino sectors, along with the LFVs, muon g�2,

Z � Z
0 mixing and bound of electroweak precision test. In Sec. III, we analyze the Dirac

fermionic DM to explain the relic density with an emphasis on the semi-annihilation and a

brief illustration of the analytic derivation. In Sec. IV, we conduct a numerical analysis, and

show the allowed region to satisfy all the phenomenologies that we discuss above. Finally

we conclude and discuss in Sec. V.

II. THE MODEL

The model is built by extending the SM with additional scalars and vector-like fermions,

which are charged under a hidden U(1) symmetry before some of the scalars obtain VEVs.

The field contents and their charge assignments are reported in Table I. For the fermion

sector, an isospin doublet L
0
⌘ [E 0

, N
0]T

i
plus two isospin singlets �i and Ni with i = 1, 2, 3,

are added. The vector-like nature of these extra fermions ensures our extension to be

anomaly-free. The quantum number assignment for L
0, �, N under the two gauge groups

of (U(1)Y , U(1)H) are (�1/2, 2x), (0, x) and (0, y) respectively. Here we use two arbitrary

integers (x, y) with {x, y} 6= 0 to keep track of the heavy fermions running in the outer and

inner loops of neutrino mass diagram (see Figure 1). As for new scalar fields, we introduce

four inert scalar fields s, ⌘, s
0, ⌘

0, where (⌘, ⌘
0) are SU(2)L doublets and (s, s0) are singlets.

3

Added as variation, H’ 
not for 2-loop seesaw  

' ! ei3x↵' observes a U(1) symmetry; However if h'i 6= 0, we need ↵ = 2⇡/3
for x 2 Integer, a Z3 parity remains.

Under Z3 parity, the lightest particle in (�i, N 0
i , ⌘, s) with parity w = ei2⇡/3(w2)

is stable. We will focus on the mass pattern where �1 is our DM.
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< H
0
>

< ' >

li

⌘+

�R lj viL �a
R N 0b

R vjL
Figure 1. one loop Feynman diagrams for FLV processes.

1

⌘ s

< H >

< ' >

li

⌘+

�R lj viL �a
R N 0b

R vjL
Figure 1. one loop Feynman diagrams for FLV processes.

1

⌘ s

< H >

< ' >< H >

�a
R N⇢

R N⇢
L N 0b

R viL �a
R N 0b

R vjL
Figure 1. one loop Feynman diagrams for FLV processes.

1

s0 ⌘0

⇥

�LY � y⌘iaL̄Li ⌘̃�Ra + ySiasL̄LiL
0
Ra

+ y⌘0
ab
L̄0
Ra

⌘̃0NLb + y0⌘0
ab
L̄0
La

⌘̃0NRb

+ ys0ab
N̄Ra�

c
Rb

s0 + y0s0ab
N̄La�

c
Lb
s0 + h.c.

L0c
L/RH

0
�L/R

Causing a tension 
among neutrino 
mass and relic 
density bound 

unless <H’> is tiny

y⌘ia

ys0⇢a y⌘0
b⇢

ySjb

L0
i =

✓
N 0

i

E0
i

◆

⌘(0) =

 
⌘(0)+

⌘(0)
R +i⌘(0)

Ip
2

!
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(m⌫)ij ⌘
1

(4⇡)4

⇣
y⌘ia [FI + FII ]aby

T
Sbj

+ ySja [F
T
I + FT

II ]aby
T
⌘bj

⌘

⌘ 1

(4⇡)4

⇣
y⌘iaGaby

T
Sbj

+ ySjaG
T
aby

T
⌘bj

⌘

y⌘ =
1

2
[(V ⇤

MNSD⌫V
†
MNS +A](yTS )

�1G�1

⇥ ⇥⇥ ⇥

X

vi

vi

H/Aa

X

(a) X

l

l

⌘
+

X

(b)
X

XX
c

H/Aa

vi
(c) X

X

vi

H/Aa

X
c

(d)

X
c

X

vi

H/Aa

X

(e)

Figure 1. Feynman diagrams for semi-annihilation processes.
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⌘
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Figure 2. one loop Feynman diagrams for FLV processes.
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0
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Figure 3. Two loops Feynman diagrams for neutrino mass.
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Figure 1. Feynman diagrams for semi-annihilation processes.
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Figure 3. Two loops Feynman diagrams for neutrino mass.

1

FI , FII / (m2
H1

�m2
H2

)(m02
H1

�m02
H2

) are finite form factors.

y⌘ is a function of yS and form factors up to an uncertainty.

"
s
(0)
R + is

(0)
I

⌘
(0)
R + i⌘

(0)
I

#
=


c↵(0) �s↵(0)

s↵(0) c↵(0)

� "
H

(0)
1 + iA

(0)
1

H
(0)
2 + iA

(0)
2

#
Mass 
Eigenstates

Imposing Neutrino 
oscillation data

A: Arbitrary anti-
symmetric matrix
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m2
Z ⇡ m2

Z0

�
1� 4✏22✏

2
3

�
, m2

Z0 ⇡ m2
Z̃

�
1 + ✏22

�
,

✓
Z
Z 0

◆
=


cZ sZ
�sZ cZ

�✓
Z0

Z̃

◆
, tan ✓Z =

�2✏1✏2✏3
1 + ✏22 � ✏21

.

The VEV of � mixes the U(1)Y and U(1)H gauge bosons. The mass eigenstates
and mixing angle are:

with ✏1 =
mZ0
m

Z̃

, ✏2 = v�
v'

and ✏3 = v�p
v2
H
+4v2

�

.

⇢0 '

⇣
1 + 2v2

�

v2
H

⌘

⇣
1 +

4v2
�

v2
H

⌘
(1� 4✏22✏

2
3)

) v� . 3.5 GeV

Assuming mZ0 > 1 TeV, this gives | tan ✓Z | < 10�5. Thus no impact on DM
annihilation or DM-nucleon scattering.
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S and T parameters
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�S =
1

12⇡

"
s2
↵
ln

 
m2

H1

m2
⌘+

!
+ c2

↵
ln

 
m2

H2

m2
⌘+

!
� 3c2

↵
s2
↵
�(mH1 ,mH2)

#

�T =
1

16⇡m2
W
s2
W

[s2
↵
F (mH1 ,m⌘+) + c2

↵
F (mH2m⌘+)� c2

↵
s2
↵
F (mH1 ,mH2)]

�(m1,m2) =
5
�
m4

1 +m4
2

�
� 22m2

1m
2
2

9 (m2
1 �m2

2)
2 +

3m2
1m

2
2

�
m2

1 +m2
2

�
�m6

1 �m6
2

3 (m2
1 �m2

2)
3 ln

✓
m2

1

m2
2

◆
,

F (m1,m2) = m2
1 +m2

2 �
2m2

1m
2
2

m2
1 �m2

2

ln

✓
m2

1

m2
2

◆
.

In this model inert scalars (⌘, s) cause notable deviation to S = �16⇡⇧0(0)W3B

and T = 4⇡
m2

Zs2W c2W
[2⇧W1W1(0)�⇧W3W3(0)].

L0
i have no impact, i.e. �Sf = 2

3⇡ (t3L � t3R)2 = 0 and �Tf = 0.

Exactly the same functions used for VLQ mixing contribution to  
S and T parameters in Phys. Rev. D 47, 2046 (1993) 
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�a
R N⇢

R N⇢
L N 0b

R viL �a
R N 0b

R vjL
Figure 1. one loop Feynman diagrams for FLV processes.
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Figure 2. one loop Feynman diagrams for Goldstones.
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Figure 2. one loop Feynman diagrams for Goldstones.

1f(m1,m2) =
1

4⇡2
dB0(p,m1,m2)

dp2 |p2=0

�0
H⌘

vH

2

�0v'

2
�0v'

2

�
�ZG+

) �ZG0

Equivalence Theorem ) �⇢ = �ZG+ � �ZG0 , where @µG+,0 are longitude modes
of W,Z game bosons.

Passarino-Veltman Function

B0(p,m1,m2) =R d4k
i(4⇡2)

1
(k2�m2

1)((k+p)2�m2
2)

↵̂�T = 2(�0
H⌘

vH
2

sin↵+ �0
v'
2

cos↵)2f(mH1 ,m⌘+)

+ 2(�0
H⌘

vH
2

cos↵� �0
v'
2

sin↵)2f(mH2 ,m⌘+)

� 1

2
�2
0v

2
'
f(mH1 ,mH2)

(�0
H⌘

vH
2

sin↵+ �0
v'
2

cos↵)2 =
(m2

H1
�m2

⌘+)2

v2
H

sin2 ↵

(�0
H⌘

vH
2

cos↵� �0
v'
2

sin↵)2 =
(m2

H2
�m2

⌘+)2

v2
H

cos2 ↵

�2
0v

2
'
=

4(m2
H1

�m2
H2

)2

v2
H

sin↵2 cos2 ↵

Self-energy diagrams 
in  gauge basis

This generalises 
the result in 
Phys. Rev. D 74, 
015007 (2006) 
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Figure 1. Feynman diagrams for semi-annihilation processes.
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Figure 2. Two loops Feynman diagrams for neutrino mass.
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Figure 1. Feynman diagrams for semi-annihilation processes.
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Table 1
Charge assignments of our fields under SU(3)C × SU(2)L × U(1)Y × U(1)H × Z2, where all the SM fields are zero 
charges under the U(1)H symmetry and even under the Z2.

UR(UL) DR(DL) ER(EL) NR(NL) H ′ ϕ ϕ′ χ

SU(3)C 3 3 1 1 1 1 1 1
SU(2)L 1 1 1 1 2 1 1 1
U(1)Y

2
3 − 1

3 −1 0 1
2 0 0 0

U(1)H 4 (1) −4 (−1) −4 (−1) 4 (1) 4 −3 −2 1

Z2 − − − + + + + −

charged leptons, which subsequently decay into the DM plus SM leptons. Finally we devote the 
Section 5 to the summary and conclusion of our results.

2. The model

We will start by presenting the particle content in our model. First of all, we introduce 
three families of right(left)-handed vector-like fermions U, D, E, N which are charged under 
U(1)H gauge symmetry; note that actually they are chiral under U(1)H and become vector-
like fermions after its spontaneous symmetry breaking [14 ,15 ]. To have gauge anomaly-free 
for [U(1)H ]2[U(1)Y ] and [U(1)H ][U(1)Y ]2, the number of family has to be the same for each 
fermion, although [U(1)H ]3 and [U(1)H ] are anomaly free between U and D or E and N .1

In scalar sector, we add an isospin doublet boson H ′ with charge 4  under the U(1)H sym-
metry that plays an role in having Dirac mass terms in the neutrino sector after spontaneous 
electroweak symmetry breaking. Also we require three isospin singlet bosons (ϕ, ϕ′, χ) with 
charges (−3, −2, 1) under the U(1)H symmetry, where ϕ, ϕ′ have nonzero vacuum expectation 
values to induce masses for U, D, E, N , while χ is expected to be an inert boson that can be a 
DM candidate. Here, we denote that all the SM fields are neutral under U(1)H symmetry, and 
each of vacuum expectation value is symbolized by ⟨H(′)⟩ ≡ vH(′)/

√
2, and ⟨ϕ(′)⟩ ≡ vϕ(′)/

√
2, 

where H is the SM Higgs field. In addition we introduce Z2 symmetry assigning odd parity 
to {χ, U, D, E} so that the stability of χ is guaranteed as a dark matter (DM) candidate. The 
Z2 parity forbids additional interaction terms: λ0χϕ∗ϕ′2, λ0

(
H ′ † H

)
ϕ∗χ and µ0χϕϕ′∗, which 

are permitted by the U(1)H symmetry but could lead to the decay of χ into SM particles. All 
the new field contents and their charge assignments are summarized in Table 1. The relevant 
renormalizable Yukawa Lagrangian and Higgs potential under these symmetries are given by

−LY = yNaa L̄La H̃
′NRa + yNϕaa

N̄LaNRaϕ + yNϕ′
ab

N̄C
La

NLbϕ
′ + yUϕaa

ŪRaULaϕ
∗

+ yDϕaa
D̄RaDLaϕ + yEϕaa

ĒRaELaϕ + (yuχ )iaūRi ULaχ
∗ + (ydχ )iad̄Ri DLaχ

+ (yeχ )iaēRi ELaχ + h.c., (1)

1 We can show the non-trivial anomaly free conditions for [U(1)H ]2[U(1)Y ] and [U(1)H ][U(1)Y ]2. 
For [U(1)H ]2[U(1)Y ]: nf

[
3 · 2

3 (4 2 − 1) − 3 · 1
3 (4 2 − 1) − (4 2 − 1)

]
= 0; For [U(1)H ][U(1)Y ]2: 

nf

[
3 ·

(
2
3

)2
(4 − 1) + 3 ·

(
− 1

3

)
(4 − 1) + (−4 + 1)

]
= 0. The nf is required to be the same for U, D, E so that 

the anomaly cancellation is achieved. In this model, we can set nf = 3.

MN =

2

4
0 m⇤

D 0
m†

D 0 MT

0 M µL

3

5

µL . mD ⌧ M m⌫ ⇡ m⇤
DM�1µL(M

T )�1m†
D

mN1,2 ⇡ M ± µL/2

mD = UMNS

p
D⌫OmixR

�1
N

The neutrino mass matrix (9 ⇥ 9) in the basis of
⇣
⌫i
L
, NC, a

R
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L

⌘
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MN , with mD ⌘ yNvH0/
p
2, M ⌘ yN'v'/

p
2, and µL ⌘ yN'0v'0/

p
2.

Imposing Casas-Ibarra 
Parametrisation

)

)
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We can fix dark matter to be             ,  and the constraints are from relic density,  muon g-2,  flavour 
violation processes from lepton and Z decay.
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3

in the ECAL to reconstructed tracks. Selection criteria based on the distribution of the shower
shape, track–cluster matching, and consistency between the cluster energy and track momen-
tum are then used in the identification of electron candidates [29]. Muon candidates are recon-
structed by requiring consistent hit patterns in the tracker and muon systems [30]. Electron
and muon candidates are required to be consistent with originating from the primary vertex
by imposing restrictions on the size of their impact parameters in the transverse plane and lon-
gitudinal direction with respect to the beam axis. To make sure the electron or muon candidate
is isolated from any jet activity, the sum of the transverse momenta of all the particles in a cone
around the candidate is required to be below a certain threshold.

The MADGRAPH5 aMC@NLO [31] event generator is used at leading order (LO) precision to
produce simulated samples of the W+jets and Z+jets processes, using the NNPDF3.0LO [32]
set of parton distribution functions (PDFs). Top quark pair production, di- and triboson pro-
duction, and rare SM processes, are generated at the next-to-leading order precision with MAD-
GRAPH5 aMC@NLO [31] and POWHEGv2.0 [33–36], using the NNPDF3.0NLO [32] set of PDFs.
Showering and hadronization is carried out by the PYTHIA 8.2 package [37], while a detailed
simulation of the CMS detector is based on the GEANT4 [38] package. The signal models are
simulated by MADGRAPH5 aMC@NLO at LO precision upto the production of tau leptons,
which are then decayed with PYTHIA 8.2. The CMS fast simulation package [39] is used to
simulate all signal samples, and is verified to provide results that are consistent with those
obtained from the full GEANT4-based simulation. Event reconstruction is performed in the
same manner as for collision data. A nominal distribution of pileup interactions is used when
producing the simulated samples. The samples are then reweighted to match the pileup pro-
file observed in the collected data. The signal production cross sections are calculated at NLO
with next-to-leading logarithm (NLL) soft-gluon resummation calculations [40]. The most pre-
cise cross section calculations are used to normalize the SM simulated samples, corresponding
most often to next-to-next-to-leading order (NNLO) accuracy.

3 Event selection
This analysis targets the final state in which both tau leptons decay hadronically. Both th candi-
dates are required to pass the identification and isolation requirements described in Sec. 2.There
is also a veto on additional electrons or muons in the event in order to be orthogonal to the
e/µ-th final state. To reduce possible top-related backgrounds, events with a b-tagged jet are
rejected. The angle between the two th candidates (Df(l1, l2)) provides an additional tool to
reduce the SM background. To reduce the SM background processes further, we take advan-
tage of the presence of two LSPs in the final state for signal processes. LSPs lead to additional
Emiss

T in the event and the correlation between the Emiss
T and the th candidates can be exploited.

The mass variables that can be calculated with the th candidates and the Emiss
T produce strong

discriminants.

For a mother particle decaying to a visible and an invisible particle, the transverse mass (MT)
calculated using only the transverse components of the energy and momentum of the decay
products should have a kinematic endpoint at the mass of the mother particle. Assuming
that the Emiss

T corresponds to the pT of the invisible particle, we calculate the transverse mass
observable for the visible particle q and the invisible particle as follows:

MT(q,~pmiss
T ) ⌘

q
2ET,qEmiss

T (1 � cos Df), (1)

In this analysis the variable SMT is used, the sum of the transverse mass variables MT (t1,~pmiss
T )

and MT (t2,~pmiss
T ). In Fig. 2 (left) the SMT distribution is shown for background and for differ-

4 4 Background estimation

ent signal mass hypotheses after the baseline selection of requiring two th candidates. Requir-
ing large SMT significantly reduces the SM background.

For every event we also calculate the stransverse mass MT2 [41, 42]. This kinematic mass vari-
able is a generalization of the transverse mass variable MT for situations with multiple invisible
particles. It tries to estimate the mass of pair-produced particles in situations when both par-
ticles decay to a final state containing the same invisible particle. In this case both staus decay
to a hadronically decaying tau lepton and an LSP, so MT2 would help to get a handle on the
stau mass. The variable is again calculated with the transverse components of the energy and
momentum of the different particles:

MT2 = min
~pX(1)

T +~pX(2)
T =~pmiss

T

h
max

⇣
M(1)

T , M(2)
T

⌘i
, (2)

where ~pX(i)
T (with i=1,2) are the unknown transverse momenta of the two undetected particles

and M(i)
T the transverse masses obtained by pairing any of the two invisible particles with one

of the two tau leptons. The minimization is done over the possible momenta of the invisible
particles, which should add up to the Emiss

T in the event. The MT2 distribution is shown in
Fig. 2 (right) after the baseline selection. This variable gives a powerful handle to reduce the
SM backgrounds for heavy staus.

The selection optimization was done separately for heavy and light stau masses since the kine-
matic variables change significantly between the two regimes. Figure 2 shows that for low stau
masses SMT is a better discriminant than MT2. Three exclusive search regions (SRs) are used
in the analysis:

• Search region 1:
• MT2 > 90 GeV
• |Df(l1, l2)| > 1.5

• Search region 2:
• 40 GeV < MT2 < 90 GeV
• SMT > 350 GeV
• Emiss

T > 50 GeV
• |Df(l1, l2)| > 1.5

• Search region 3:
• 40 GeV < MT2 < 90 GeV
• 300 GeV < SMT < 350 GeV
• Emiss

T > 50 GeV
• |Df(l1, l2)| > 1.5

While search region 1 improves the sensitivity towards signal models with larger stau masses,
search regions 2 and 3 mainly help to target models with smaller stau masses.

4 Background estimation
After requiring two high-pT th candidates, the dominant background consists of QCD multijet
and W+jets processes, where one or more of the th candidates originate from a parton and is
misidentified as a prompt th. This background is predicted using a data-driven method relying
on a control region with a loose isolation requirement. We estimate how often loosely isolated

X

X
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Neutrino as the most abundant fermion in universe is special. For model 
building,  seesaw mechanism is implemented to generate  < 0.1 eV order 
mass (Dirac or Majorana),                                          .

Many neutrino models postulate extra neutral fermions and scalars, with 
discrete symmetry (Abelian or non-Abelian),  giving rise to DM candidate.

New signals inherent normally are:  Lepton flavour violation processes, 
collider signatures at  LHC. 

. 10�6 ⇥mE(= 0.511MeV)



Back up Slides  

For Inverse Seesaw Model



Haiying CAI    (APCTP  Korea)

The model

 21

H. Cai et al. / Nuclear Physics B 949 (2019) 114802 3

Table 1
Charge assignments of our fields under SU(3)C × SU(2)L × U(1)Y × U(1)H × Z2, where all the SM fields are zero 
charges under the U(1)H symmetry and even under the Z2.

UR(UL) DR(DL) ER(EL) NR(NL) H ′ ϕ ϕ′ χ

SU(3)C 3 3 1 1 1 1 1 1
SU(2)L 1 1 1 1 2 1 1 1
U(1)Y

2
3 − 1

3 −1 0 1
2 0 0 0

U(1)H 4 (1) −4 (−1) −4 (−1) 4 (1) 4 −3 −2 1

Z2 − − − + + + + −

charged leptons, which subsequently decay into the DM plus SM leptons. Finally we devote the 
Section 5 to the summary and conclusion of our results.

2. The model

We will start by presenting the particle content in our model. First of all, we introduce 
three families of right(left)-handed vector-like fermions U, D, E, N which are charged under 
U(1)H gauge symmetry; note that actually they are chiral under U(1)H and become vector-
like fermions after its spontaneous symmetry breaking [14 ,15 ]. To have gauge anomaly-free 
for [U(1)H ]2[U(1)Y ] and [U(1)H ][U(1)Y ]2, the number of family has to be the same for each 
fermion, although [U(1)H ]3 and [U(1)H ] are anomaly free between U and D or E and N .1

In scalar sector, we add an isospin doublet boson H ′ with charge 4  under the U(1)H sym-
metry that plays an role in having Dirac mass terms in the neutrino sector after spontaneous 
electroweak symmetry breaking. Also we require three isospin singlet bosons (ϕ, ϕ′, χ) with 
charges (−3, −2, 1) under the U(1)H symmetry, where ϕ, ϕ′ have nonzero vacuum expectation 
values to induce masses for U, D, E, N , while χ is expected to be an inert boson that can be a 
DM candidate. Here, we denote that all the SM fields are neutral under U(1)H symmetry, and 
each of vacuum expectation value is symbolized by ⟨H(′)⟩ ≡ vH(′)/

√
2, and ⟨ϕ(′)⟩ ≡ vϕ(′)/

√
2, 

where H is the SM Higgs field. In addition we introduce Z2 symmetry assigning odd parity 
to {χ, U, D, E} so that the stability of χ is guaranteed as a dark matter (DM) candidate. The 
Z2 parity forbids additional interaction terms: λ0χϕ∗ϕ′2, λ0

(
H ′ † H

)
ϕ∗χ and µ0χϕϕ′∗, which 

are permitted by the U(1)H symmetry but could lead to the decay of χ into SM particles. All 
the new field contents and their charge assignments are summarized in Table 1. The relevant 
renormalizable Yukawa Lagrangian and Higgs potential under these symmetries are given by

−LY = yNaa L̄La H̃
′NRa + yNϕaa

N̄LaNRaϕ + yNϕ′
ab

N̄C
La

NLbϕ
′ + yUϕaa

ŪRaULaϕ
∗

+ yDϕaa
D̄RaDLaϕ + yEϕaa

ĒRaELaϕ + (yuχ )iaūRi ULaχ
∗ + (ydχ )iad̄Ri DLaχ

+ (yeχ )iaēRi ELaχ + h.c., (1)

1 We can show the non-trivial anomaly free conditions for [U(1)H ]2[U(1)Y ] and [U(1)H ][U(1)Y ]2. 
For [U(1)H ]2[U(1)Y ]: nf

[
3 · 2

3 (4 2 − 1) − 3 · 1
3 (4 2 − 1) − (4 2 − 1)

]
= 0; For [U(1)H ][U(1)Y ]2: 

nf

[
3 ·

(
2
3

)2
(4 − 1) + 3 ·

(
− 1

3

)
(4 − 1) + (−4 + 1)

]
= 0. The nf is required to be the same for U, D, E so that 

the anomaly cancellation is achieved. In this model, we can set nf = 3.

Non-trivial anomaly free conditions involve with products of U(1)s.

For [U(1)H ]2[U(1)Y ]:

nf

⇥
3 · 2

3 (4
2 � 1)� 3 · 1

3 (4
2 � 1)� (42 � 1)

⇤
= 0

For [U(1)H ][U(1)Y ]2:

nf

h
3 ·

�
2
3

�2
(4� 1) + 3 ·

�
� 1

3

�
(4� 1) + (�4 + 1)

i
= 0
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processes induced
at the

one-loop
level in

the
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odel.

(m
⌫
1 , m

⌫
2 , m

⌫
3 ) is given

by

m †
⌫ m

⌫ =
U

PM
N

S

2
6664 m

2
⌫
1

0
0

0
m

2
⌫
2

0

0
0

m
2
⌫
3

3
7775 U †PM

N
S ,

(II.17)

which
is subject to

the
constraints of neutrino

oscillation
data

in
Table

1
of Ref. [17]:

sin 2
✓

12 =
0.304

,
sin 2

✓
23 =

0.452
,

sin 2
✓

13 =
0.0218

,
�

PM
N

S = 306180 ⇡.
(II.18)

W
e take the M

ajorana CP-violating (CPV) phases to be zero. Furtherm
ore, in

our num
erical

analysis we
take

the
following

neutrino
m

asses as an
explicit exam

ple:

m
⌫
1 =

0
eV,

m
⌫
2 = p

0.750
⇥

10 �
2

eV,
m

⌫
3 = p

24.57
⇥

10 �
2

eV.
(II.19)
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R
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V
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Lepton
flavor-violating

(LFV)
processes

arise
from

the
Yukawa

term
with

the
m

atrix

coe�
cient f :

L
Y

�
F 0ia ¯̀

i P
R E 0

a (S
R +

iS
I ) +

h.c.
with

F 0ia =
1p

2 f
ij (V †C )

j
a ,

(II.20)

where
(`1 , `2 , `3 )

⌘
(e, µ, ⌧).

A
generic

one-loop
radiative

LFV
decay

process
is

plotted
in

Fig. 2. The
corresponding

decay
branching

ratio
is given

by
(for i

6=
j)

BR(`
i !

`
j �) = 48⇡ 3↵

em C
ij

G
2
F ����� 3X

a=
1 X

J=
R

,I

F 0j
a F 0ia ⇤

32⇡ 2 2 +
3r

a
J
�

6r 2
a
J +

r 3
a
J +

6r
a
J ln r

a
J

6m
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S

J (1
�

r
a
J ) 4

����� 2

,(II.21)
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FIG. 2: LFV processes induced at the one-loop level in the model.

(m⌫1
, m⌫2

, m⌫3
) is given by

m
†
⌫
m⌫

= UPMNS

2
6664

m2
⌫1

0 0

0 m2
⌫2

0

0 0 m2
⌫3

3
7775

U
†
PMNS

,

(II.17)

which is subject to the constraints of neutrino oscillat
ion data in Table 1 of Ref. [17]:

sin
2 ✓12 = 0.304 , sin

2 ✓23 = 0.452 , sin
2 ✓13 = 0.0218

, �PMNS =
306

180
⇡.

(II.18)

We take the Majorana CP-violating (CPV) phases to be zero. Furthermore, in our numerical

analysis we take the following neutrino masses as an explicit example:

m⌫1
= 0 eV, m⌫2

=
p

0.750 ⇥ 10
�2 eV, m⌫3

=
p

24.57 ⇥ 10
�2 eV.

(II.19)

D. Radiative
Lepton Decays with Flavor Violatio

n

Lepton flavor-violating (LFV) processes
arise from the Yukawa term with the matrix

coe�cient f :

LY
� F

0
ia

¯̀
iPR

E
0
a
(SR

+ iSI) + h.c. with F
0
ia

=
1
p

2
fij

(V
†
C
)ja

,
(II.20)

where (`1, `2, `3) ⌘ (e, µ, ⌧). A generic one-loop radiative LFV decay process is plotted
in

Fig. 2. The corresp
onding decay branching ratio is given by (for i 6= j)

BR(`i
! `j�) =

48⇡
3 ↵emCij

G2
F

�����

3X

a=1

X

J=R,I

F0
ja
F0

ia

⇤

32⇡
2

2 + 3raJ
� 6r2aJ

+ r3aJ
+ 6raJ

ln raJ

6m
2
SJ

(1 � raJ
)4

�����

2

,

(II.21)
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Figure 1. Feynman diagrams for semi-annihilation processes.
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FIG. 1: The masses for active neutrinos are generated by inverse seesaw.

V =
H,H

0
,','

0
,�X

�

⇥
µ2

�
�†� + ��|�

†�|
2
⇤
+

1

2

H,H
0
,','

0
,�X

� 6=�0

���0 |�|
2
|�0

|
2 + �0

HH0(H†H 0)(H 0†H)

+
⇥
�0(H

†H 0)'02
� µ��'0 + h.c.

⇤
, (2)

where H̃ = i�2H⇤, �(0)
��0 = �(0)

�0�, and the upper indices (a, b, i) = 1, 2, 3 are the number of

families. All the Yukawa couplings in Eq. (1) are assumed to be diagonal except for yN'0 .

Thus in this model, the mixing of active neutrinos are induced via yN'0 and as illustrated by

Figure 1, the neutrino mass is generated by the inverse seesaw. With the outline of particle

content and Lagrangian, we are going to present the detail for each sector.

A. Scalar sector

We will first focus on the scalar spectra by demanding the VEV of � to be vanishing.

The non-zero VEVs of scalar fields are obtained by the minimum conditions:

@V

@vH

=
@V

@vH0
=

@V

@v'

=
@V

@v'0
= 0, (3)

The VEVs v0
H

and v'0 generate Dirac mass term of L̄H 0NR and Majorana mass term of

N̄C

L
NL�0 respectively which should be small. On the other hand v� generate a Dirac mass

term for extra fermions NL(R) which is expected to be of TeV scale. Thus we impose the

VEV hierarchy of vH0 ⌧ vH < v'0 ⌧ v' in order to realise the inverse seesaw mechanism.

In this limit, we will approximately obtain the expressions:

vH '

s
2
�
�H'0µ2

'0 � 2�'0µ2
H

�

4�H�'0 � �2
H'0

, v'0 '

s
2
�
�H'0µ2

H
� 2�Hµ2

'0

�

4�H�'0 � �2
H'0

vH0 '
��0vHv2

'0

2µ2
H0 + (�HH0 + �0

HH0)v2
H

, v' '

s
�µ2

'

�'

(4)
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UMNS =

2

4
c13c12 c13s12 s13e�i�

�c23s12 � s23s13c12ei� c23c12 � s23s13s12ei� s23c13
s23s12 � c23s13c12ei� �s23c12 � c23s13s12ei� c23c13

3

5

⇥diag(1, ei
↵21
2 , ei

↵31
2 )

m⌫ ⇡ m⇤
DM�1µL(M

T )�1m†
D mD = UMNS

p
D⌫OmixR

�1
N

R�1
N =

2

4
1
a 0 0

� d
ab

1
b 0

�be+df
abc

f
bc

1
c

3

5 , µM = M�1µL(M
T )�1

a =
p
µM,11, d =

µM,12

a
, b =

q
µM,22 � d2, f =

d µM,13 � a µM,23

ab

e =
µM,13

a
+ 2

d

b
f, c =

s

µM,33 �
✓
e� 2

d

b
f

◆2

� f2
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Top quark threshold
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Direct Detection Bound
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