
Perturbation Problem Adaptive Perturbation Method Time-Independent Perturbation Conclusion

Perturbation Problem and

Adaptive Method

Chen-Te Ma (SCNU and UCT)

arxiv: 1911.08211 [quant-ph]

November 23, 2019



Perturbation Problem Adaptive Perturbation Method Time-Independent Perturbation Conclusion

Perturbation Problem

• The most interesting problem in quantum field theory is QCD

at the low-energy limit. Two main problems related to the

low-energy regime are 1:Color Confinement; 2: Critical Points.

• This theory only can be studied from the standard

perturbation method in the high-energy regime. Therefore, we

suffer from the strong coupling problem in the above

problems.
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Zero-Dimensional φ4 Model

The partition function is

Z (g) ≡
∫ ∞
−∞

dφ√
2π

e−
φ2

2
−g φ4

24 =

√
3

2πg
e

3
4g K 1

4

(
3

4g

)
, (1)

where Kα(x) is the modified Bell function.
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The integral can also be evaluated from the expansion of the g

Z (g) = 1− g

8
+

35g2

384
− 385g3

3072
+ · · · . (2)

lnZ (g)

= −g

8
+

g2

12
− 11g3

96
+

17g4

72

−619g5

960
+

709g6

324
− 858437g7

96768
+ · · · . (3)

It is easy to observe that the coefficient grows rapidly with the

increasing of the powers of the g . Indeed, the small g expansion

is only asymptotic because the coefficient of the gm grows as m!.

The inclusion of the first-few orders at the small g reproduces the

exact result with a good precision. We need to improve the

perturbation method.
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Decomposition

We demonstrate the unperturbed order of the adaptive

perturbation method from the Hamiltonian

H1 =
p2

2
+
λ1
6
x4 +

λ2
120

x6, (4)

where p and x are the momentum and position operators, and λ1

and λ2 are coupling constants. The p and x satisfy the usual

commutation relation

[p, x ] = −i . (5)
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Now we introduce the A†γ and Aγ as that:

x =
1√
2γ

(A†γ + Aγ), p = i

√
γ

2
(A†γ − Aγ). (6)

The commutation relation between Aγ and A†γ is

[Aγ ,A
†
γ ] = 1. (7)

The operators acting on a quantum state gives that:

Nγ |nγ〉 = nγ |nγ〉; Aγ |0γ〉 = 0, (8)

where

Nγ ≡ A†γAγ . (9)
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We first decompose the Hamiltonian to a solvable part and a

perturbation part. The solvable part contains the diagonal

elements of the Fock space from the interacting term. In other

words, the diagonal elements in the solvable part of the

Hamiltonian H0(γ) can be written in terms of the Nγ , which is

γ

4
(2Nγ + 1) +

λ1
4γ2

(
N2
γ + Nγ +

1

2

)
+
λ2

4γ3

(
1

12
N3
γ +

29

240
N2
γ +

1

6
Nγ +

1

16

)
. (10)
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The expectation value of the energy is:

En(γ)

≡ 〈nγ |H1(γ)|nγ〉

= 〈nγ |H0(γ)|nγ〉

=
γ

4
(2nγ + 1) +

λ1
4γ2

(
n2γ + nγ +

1

2

)
+
λ2

4γ3

(
1

12
n3γ +

29

240
n2γ +

1

6
nγ +

1

16

)
.

(11)
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We still have one undetermined variable γ. To fix this variable, we

choose the minimized expectation value of the energy to

determine. The minimized expectation value of the energy occurs

when γ > 0 satisfies

γ4 − 2λ1
n2γ + nγ + 1

2

2nγ + 1
γ − 3λ2

1
12n

3
γ + 29

240n
2
γ + 1

6nγ + 1
16

2nγ + 1
= 0. (12)

Then we choose the minimized expectation value of the energy as

the unperturbed spectrum.

When λ2 = 0, the minimized energy is

En(γ)min =
3

8
λ

1
3
1 (2nγ + 1)

2
3
(
2n2γ + 2nγ + 1

) 1
3 . (13)
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n En(γ)min Numerical Solution

0 1.117 1.074

1 4.047 3.941

2 7.993 7.963

3 12.724 12.764

4 18.109 18.203

5 24.067 24.189

6 30.54 30.657

7 37.486 37.555

Table: The comparison between the En(γ)min and the numerical solutions

for the λ1 = 16 and λ2 = 256.
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n En(γ)min Numerical Solution

0 0.343 0.326

1 1.258 1.218

2 2.512 2.504

3 4.039 4.072

4 5.795 5.87

5 7.753 7.869

6 9.892 10.048

7 12.197 12.391

Table: The comparison between the En(γ)min and the numerical solutions

for the λ1 = 0.25 and λ2 = 4.
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• Now we use the time-independent perturbation of the H1 with

λ2 = 0 to discuss why the adaptive perturbation method is

better than before.

• The eigenenergy calculated by the time-independent

perturbation is

En = E
(0)
n + λ〈n(0)|V |n(0)〉+ λ2

∑
k 6=n

|〈k(0)|V |n(0)〉|2

E
(0)
n − E

(0)
k

+ · · · ,(14)

where E 0
n is the n-th unperturbed eigenenergy, |n(0)〉 is the

n-th unperturbed eigenstate, λ is the coupling constant.

• When we use the adaptive time-independent perturbation, the

V is defined by H1 ≡ H0 + λ1V /(24γ2), and the E
(0)
n is

defined by the En(γ)min, and λ ≡ λ1/(24γ2). Then we can

show that each term is at the same order of the coupling

constant λ
1/3
1 .
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• This is not a bad result and gives the consistency to the

spectrum because we can do the transformations, x → x/λ
1/6
1

and p → λ
1/6
1 p, to show that the H1 or its spectrum must be

proportional to λ
1/3
1 .

• In the final, we also find that |〈k(0)|V |n(0)〉|2 contributes n2γ
and E

(0)
n − E

(0)
k also contribute so when a quantum number is

large enough. Hence no divergence comes from a summation

of the quantum numbers.

• Indeed, it is also due to using the En(γ)min because it includes

information about the coupling constant. When we include

the mass term in the standard time-independent perturbation,

the unperturbed part is the harmonic oscillator. The

unperturbed eigenenergy is proportional to a quantum

number. Hence the divergence must appear when the

quantum number becomes large.
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• When we go to the higher-order of the time-independent

perturbation, we can find more multiplications of the

E
(0)
n − E

(0)
k . Even for the unperturbed ground-state, the

calculation of the higher-order term will be suppressed by the

multiplications of the E
(0)
n − E

(0)
k .
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• We analyzed the deviation between the En(γ)min and the

numerical solution from different parameters.

• We also discuss why the adaptive perturbation method is

better than before from the explicit Hamiltonian H1 with the

λ2 = 0.

• One interesting application of quantum mechanics is to

observe whether the spectrum can have a universal rule when

the phase transition occurs.

• Now we only focus on checking the bosonic quantum

mechanics, but the perturbation problem and theoretical

formulation should be similar in bosonic quantum mechanics

and quantum field theory.
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