

The KATRIN Neutrino Mass Experiment

Menglei Sun (University of Washington) Composite 2019 Workshop, Nov 23, 2019, Guangzhou

Motivation

- Neutrino oscillation $\rightarrow m_{\nu} > 0$
- Evidence for BSM physics
- m_{ν} of major interest for astrophysics and cosmology m^{2}
- Neutrino Mass Hierarchy

$$m_{\nu} = ?$$

Tritium Beta Decay

$$\frac{dN}{dE} \propto \sqrt{(E_0 - E)^2 - m_v^2}$$
Low endpoint energy $E \simeq 18.6 \text{ KeV}$
Short half-life $T_{1/2} = 12.3 \text{ yr}$

Model-independent determination of the neutrino mass by kinematics

High-resolution β spectrometer

UNIVERSITY of WASHINGTON

Magnetic Adiabatic Collimation & Electrostatic Filter (MAC-E)

- An integrating high-energy pass filter
 Energy Resolution of KATRIN spectrometer:
 - $\Delta E \sim 0.93$ eV at 18.6 KeV

KATRIN

KATRIN - Karlsruhe Tritium Neutrino Experiment

- Located in Karlsruhe Institute of Technology (KIT), Germany
- Ultra-luminous tritium source
- Goal: measure neutrino mass with a sensitivity of 200 meV/c²

W UNIVERSITY of WASHINGTON

Windowless gaseous tritium source

- High luminosity (10¹¹ Bq)
- Ultra-stable tritium source (Stable to 0.1% level)
- High isotopic purity ($\varepsilon_T > 95\%$)

KATRIN Main Spectrometer

KATRIN will measure the integrated beta decay spectrum

UNIVERSITY of WASHINGTON

KATRIN Detector

Focal Plane Detector

- Si-PIN diode
- 148 pixels
- low intrinsic background
- Is able to provide 30 kV of "postacceleration" to the electrons

Region of interest used in first neutrino mass measurement: 14 – 32 KeV

Data Taking

UNIVERSITY of WASHINGTON

May 18th, the WGTS was operated with tritium for the first time.

First Neutrino Mass Campaign

4-week long measuring campaign in spring 2019

- Goal: 1eV neutrino mass sensitivity
- High-purity tritium
- High source activity:
 - 2.45 x 10¹⁰ Bq
- Tritium gas density:
 - 22% nominal density

Tritium Scanning:

- 274 scans of tritium spectrum
 - \circ [E₀ 40 eV, E₀ + 50 eV]
 - 2 hours per run
 - Alternating up-/down- scans

Analysis – modelling of data WASHINGTON

Model of the spectrum = Beta-decay spectrum \otimes **Response function**

- The response function is measured with an e-gun located at the rare section
- The propagation of the electrons in the beamline and spectrometer is well modeled by simulation software.

UNIVERSITY of

The background rate is measured by setting qU above the endpoint.

Analysis – bias-free analysis WASHINGTON

UNIVERSITY of

ATR III

Analysis – Fitting result

- Fit of experimental spectrum to model with 4 parameters:
 - M_v^2 : neutrino mass
 - E₀ : beta-decay endpoint
 - A_{sig}, A_{bkg}: signal and background amplitude
- Neutrino mass: best fit results
 E₀ = (18573.7 +- 0.1) eV

$$m^2(\nu_e) = \left(-1.0 + 0.9 - 1.1\right) \text{eV}^2 (90\% \text{ CL})$$

- Goodness-of-fit: Chi^2/dof = 21.4/23
- Two uncertainty propagation methods
 - Covariance matrix
 - MC propagation

UNIVERSITY of WASHINGTON

Upper limit on neutrino mass

KATRIN upper limit on ٠ 90 % C.L. (stat. + sys.) neutrino mass: 1.6 90% C.L. (stat.) $m_{\nu} < 1.1 \ eV$ (90%) *m*²_{ν, truth} (eV²) 80 87 Here we follow the Lokhov ٠ and Tkachov method 0.4 0.0 -13 -2 0 2 $m_{\nu, \, \rm fit}^2$ (eV²)

UNIVERSITY of WASHINGTON

Upper limit on neutrino mass

- KATRIN: probe neutrino mass via tritium decay
 - High-luminosity tritium source
 - High-resolution MAC-E spectrometer
 - Goal: 200 meV/c^2 sensitivity
- First neutrino mass compaign:
 - T₂ gas with high purity was used
 - Best fit result on neutrino mass:
 - Upper limit: $m_v < 1.1 \text{ eV} (90\% \text{ CL})$

$$m^2(v_e) = \left(-1.0 + 0.9 - 1.1\right) \text{eV}^2 (90\% \text{ CL})$$

 Paper: "An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN"

WASHINGT

The KATRIN Collaboration

EST. 1826

MADRID

Back Up

best-fit result corresponds to a 1-\sigma statistical fluctuation to negative m²(v_e)

