

超级陶粲装置上的物理 模拟进展

周小蓉(代表STCF物理工作组)

中国物理学会高能物理分会第十三届全国粒子物理学术 2021.8.16-19

Super tau-Charm Facility in China

- Peaking luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity and realize beam polarization
- A nature extension and a viable option for China accelerator project in the post BEPCII/BESIII era

Physics in tau-Charm Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark,
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with D mesons
- fD and fDs
- D0-D0 mixing
- Charm baryons
- Rich of physics program, unique for physics with *c* quark and τ leptons,
- important playground for study of QCD, exotic hadrons, flavor and search for new physics.

Expected Data Samples at STCF

不同能量点上一	<mark>年产生的事例样本</mark>
---------	-----------------------

CME (GeV)	Lumi (ab ⁻¹)	samples	$\sigma(nb)$	No. of Events	remark
3.097	1	J/ψ	3400	3.4×10^{12}	
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}	
		ψ(3686)	640	6.4×10^{11}	
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}	
		$\psi(3686) \rightarrow \tau^+ \tau^-$		2.0×10^{9}	
		$D^0 ar{D}^0$	3.6	3.6×10^{9}	
		$D^+ \overline{D}^-$	2.8	2.8×10^{9}	
3.770	1	$D^0 ar D^0$		7.9×10^{8}	Single Tag
		$D^+ \overline{D}^-$		5.5×10^{8}	Single Tag
		$\tau^+\tau^-$	2.9	2.9×10^{9}	
		$\gamma D^0 \overline{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = +1$
4.040	1	$\pi^0 D^0 \bar{D}^0$	0.40	4.0×10^{6}	$CP_{D^0\bar{D}^0} = -1$
4.040	1	$D_s^+ D_s^-$	0.20	2.0×10^{8}	
		$\tau^+\tau^-$	3.5	3.5×10^{9}	
		$D_{s}^{+*}D_{s}^{-}+c.c.$	0.90	9.0×10^{8}	
4.180	1	$D_{s}^{+*}D_{s}^{-}+c.c.$		1.3×10^{8}	Single Tag
		$\tau^+\tau^-$	3.6	3.6×10^{9}	
		$J/\psi \pi^+\pi^-$	0.085	8.5×10^{7}	
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}	
		γX(3872)			
4.260	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}	
4.300	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4.420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}	
4.420	1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
4.(20		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}	
4.630		$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}	
	1	$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single Tag
		$\tau^+\tau^-$	3.4	3.4×10^{9}	
4.0-7.0	3	300 points	scan with 1	0 MeV step, 1 fb ⁻	¹ /point
> 5	2-7	several ab-1 high o	energy data,	details dependent	on scan results
		-			

XYZIT				
XYZ	Y(4260)	$Z_c(3900)$	$Z_c(4020)$	X(3872)
No. of events	1010	10 ⁹	10 ⁹	5×10^{6}

超子工厂

Decay mode	$\mathcal{B}(\text{units } 10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF
$J/\psi \to \Lambda\bar{\Lambda}$ $\psi(2S) \to \Lambda\bar{\Lambda}$ $J/\psi \to \Xi^0\bar{\Xi}^0$ $\psi(2S) \to \Xi^0\bar{\Xi}^0$ $J/\psi \to \Xi^-\bar{\Xi}^+$	$19.43 \pm 0.03 \pm 0.33$ $3.97 \pm 0.02 \pm 0.12$ 11.65 ± 0.04 2.73 ± 0.03 10.40 ± 0.06	$\begin{array}{c} 0.469 \pm 0.026 \\ 0.824 \pm 0.074 \\ 0.66 \pm 0.03 \\ 0.65 \pm 0.09 \\ 0.58 \pm 0.04 \end{array}$	40% 40% 14% 14% 19%	$1100 \times 10^{6} \\ 130 \times 10^{6} \\ 230 \times 10^{6} \\ 32 \times 10^{6} \\ 270 \times 10^{6} \\ $

轻介子工厂

Decay Mode	$\mathcal{B}(\times 10^{-4})$ [2]	η/η' events
$J/\psi \to \gamma \eta'$	52.1 ± 1.7	1.8×10^{10}
$J/\psi \to \gamma \eta$	11.08 ± 0.27	3.7×10^{9}
$J/\psi ightarrow \phi \eta'$	7.4 ± 0.8	2.5×10^{9}
$J/\psi ightarrow \phi\eta$	4.6 ± 0.5	1.6×10^{9}

- Belle-II (50/ab) has more statistics
- LHCb have much more statistics, but huge background
- STCF is expected to have higher detection efficiency and low bkgs for productions at threshold
- Additionally, STCF excellent resolution, kinematic constraining

Fast Simulation Package

X. D. Shi et al., JINST, 16, P03029 (2021)

Neutral

0.1

0.12

0.14

- The FastSim can provide a critical tool for exploring physical potential;
- The FastSim takes the response of physical objects in each sub-detector: resolution, efficiency, helix, error matrix etc.
- ➢ Geant4 free, save time and space

Events/ 0.6 MeV/c²

2500

2000

1500

1000

500

3.66

Charged

3.67

3.68

3.69

3.7

The package is validated well by comparing fast simulation and BESIII's result

Full simulation

3.71 3.72

 $M(\psi')(GeV/c^2)$

STCERE

2000

0.08

Fast Simulation Package

X. D. Shi et al., JINST, 16, P03029 (2021)

- ➤ The FastSimu provide flexibly adjusted responses in each sub-system, which is helpful for the optimization of detector design during R&D.
 - RMS of pi0 with different energy/position resolution of photon:

• D tag with different track resolution:

Highlighted physics at STCF

QCD and Hadronic Physics

- Exotic states and hadron spectroscopy
- ➢ Hadron structures
- Precision test of SM parameters

□Flavor Physics and CP violation

- > CKM matrix, $D^0 \overline{D}^0$ mixing
- > CP violation in lepton, hyperon, charm

DNew Physics Search

- ≻ Rare/Forbidden
- ➢ Dark particle search

Highlighted physics at STCF

QCD and Hadronic Physics

- Exotic states and hadron spectroscopy
- ➢ Hadron structures
- Precision test of SM parameters

DFlavor Physics and CP violation

≻ CKM matrix, D⁰ - D̄⁰ mixing
≻ CP violation in lepton, hyperon, charm

DNew Physics Search

- ≻ Rare/Forbidden
- > Dark particle search

QCD and Hadronic Physics
> Exotic states and hadron spectroscopy
> Hadron structures
➤ Precision test of SM parameters
Flavor Physics and CP violation
\geq CKM matrix, $D^0 - \overline{D}^0$ mixing
> CP violation in lepton, hyperon, charm
New Physics Search
➢ Rare/Forbidden

Charmonium (Like) Spectroscopy

Charmonium(Like) Spectroscopy at STCF

- B factory : Total integrate effective luminosity between 4-5 GeV is 0.23 ab⁻¹ for 50 ab⁻¹ data
 τ-C factory : scan in 4-5 GeV, 10 MeV/step, every point have 10 fb⁻¹/year, 5 time of Belle II for 50 ab⁻¹ data
- τ-C factory have much higher efficiency and low background than B Factory

Belle with ISR: PRL110, 252002 967 fb-1 in 10 years running time

BESIII at 4.260 GeV: PRL110, 252001 0.525 fb⁻¹ in one month running time

Collins Fragmentation Function (FF)

$$D_{hq^{\dagger}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h},$$

 D_1 : the un-polarized FF H_1 : Collins FF

 \rightarrow describes the fragmentation of a transversely polarized quark into a spin-less hadron *h*.

 \rightarrow depends on $z = 2E_h/\sqrt{s}$,

 \rightarrow leads to an azimuthal modulation of hadrons around the quark momentum.

SIDIS

e+ e-

Collins FF 🛞 Collins FF

Collins FF at STCF

B. L. Wang et al., Journal of University of Chinese Academy of Sciences, 2021, 38(4):433-441

- STCF is a perfect machine for studying Collins effect
- > Poor performance for the traditional dE/dx & TOF PID system for tracks > 0.8GeV
- > This measurement suffer from systematic uncertain from $K \pi$ mis-PID.
- ➤ The mis-PID is even worse in the case of *KK* Collins measurement.
- → With 2.5 fb⁻¹ 7GeV $q\bar{q}$ MC ($\sigma \approx 5$ nb LundArlw), we study Collins effect at STCF.

20

15

10

5

Blue: π/K mis-PID in KK Collins measurement. Left) de/dx&TOF. Right) a 1% mis-PID set in FastSim

> By setting the K/π mis-PID at 1%, we obtain:

• The statistical uncertainty for 25fb^{-1} MC is $\sim 10^{-3}$ to 10^{-2}

10

• The statistical uncertainty for $1ab^{-1}$ MC is $\sim 10^{-4}$ to 10^{-3}

HVP Contribution to $(g-2)_{\mu}$

High Luminosity of STCF will largely improve the SM precisions !

Electromagnetic Form Factors

- Fundamental properties of the nucleon
 - Connected to charge, magnetization distribution
 - > Crucial testing ground for models of the nucleon internal structure

QCD and Hadronic Physics

Physics at STCF	Benchmark Processes	Key Parameters*	Remarks
XYZ properties	$e^+e^- \rightarrow Y \rightarrow \gamma X, \eta X, \phi X$ $e^+e^- \rightarrow Y \rightarrow \pi Z_c, KZ_{cs}$	$N_{Y(4260)/Z_c/X(3872)} \sim 10^{10} / 10^9 / 10^6$	Leading role
Pentaquarks, Di-charmonium	$e^+e^- \rightarrow J/\psi p\bar{p}, \Lambda_c \overline{D}\bar{p}, \Sigma_c \overline{D}\bar{p}$ $e^+e^- \rightarrow J/\psi \eta_c, J/\psi h_c$	$\sigma(e^+e^- \rightarrow J/\psi p\bar{p})\sim 4 \text{ fb};$ $\sigma(e^+e^- \rightarrow J/\psi c\bar{c})\sim 10 \text{ fb}$ (prediction)	In Competition with BelleII/LHCb
Hadron Spectroscopy	Excited <i>cc̄</i> and their transition, Charmed hadron spectroscopy, Light hadron spectroscopy	$\frac{N_{J/\psi/\psi(3686)/\Lambda_c}}{10^{12}/10^{11}/10^8}$	Leading role
Muon g-2	$e^+e^- \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^0, K^+K^-$ $\gamma\gamma \rightarrow \pi^0, \eta^{(\prime)}, \pi^+\pi^-$	$\Delta a_{\mu}^{HVP} \ll 40 \times 10^{-11}$	In Competition with BelleII
R value, au mass	$e^+e^- \rightarrow inclusive$ $e^+e^- \rightarrow \tau^+\tau^-$	$\Delta m_{\tau} \sim 0.012 \text{ MeV}$ (with 1 month scan)	Leading role
Fragmentation functions	$e^+e^- \rightarrow (\pi, K, p, \Lambda, D) + X$ $e^+e^- \rightarrow (\pi\pi, KK, \pi K) + X$	$\Delta A^{Collins} < 0.002$	Synergy with Eic/EicC
Nucleon Form Factors	$e^+e^- \rightarrow B\overline{B}$ from threshold	$\delta R_{EM} {\sim} 1\%$	Leading role

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Highlighted physics at STCF

QCD and Hadronic Physics

- Exotic states and hadron spectroscopy
- ≻ Hadron structures
- > Precision test of SM parameters

□Flavor Physics and CP violation

- \succ CKM matrix, $D^0 \overline{D}^0$ mixing
- ≻ CP violation in lepton, hyperon, charn

DNew Physics Search

- ≻ Rare/Forbidden
- Dark particle search

Facilities for Charm Study

- ≻LHCb: huge x-sec, boost, 9 fb⁻¹ now (×40 current B factories)
- B-factories (Belle(-II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency
- τ-charm factory : Low backgrounds and high efficiency, Quantum correlations and CP-tagging are unique
- \succ STCF :
- 4×10^9 pairs of $D^{\pm,0}$ and $10^8 D_s$ pairs per year
 - -10^{10} charm from Belle II/year
- Highlighted Physics programs
 - Precise measurement of (semi-)leptonic decay (f_D , f_{Ds} , CKM matrix...)
 - *D* decay strong phase (Determination of $\gamma/\phi 3$ angle)
 - $D^0 \overline{D}^0$ mixing, CPV
 - Rare decay (FCNC, LFV, LNV....)
 - Excite charm meson states D_J , D_{sJ} (mass, width, J^{PC} , decay modes)
 - Charmed baryons (JPC, Decay modes, absolute BF)

Features in Charm Hadron Decays

	STCF	Belle II	LHCb
Production yields	**	****	****
Background level	****	***	**
Systematic error	****	***	**
Completeness	****	***	*
(Semi)-Leptonic mode	****	****	**
Neutron/K _L mode	****	***	☆
Photon-involved	****	****	*
Absolute measurement	****	***	☆

- Most are precision measurements, which are mostly dominant by the systematic uncertainty
- STCF has overall advantages in several studies

Precision Measurements of CKM Elements

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- □ A precise test of EW theory
- **New physics beyond SM?**

A direct measurement of V_{cd(s)} is one of the most important task in charm physics

D_(s) (Semi-)Leptonic decay

Purely Leptonic:

$$\Gamma(D_{(s)}^+ \to \ell^+ \nu_{\ell}) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} | V_{cd(s)} |^2 m_{\ell}^2 m_{D_{(s)}^+} \left(1 - \frac{m_{\ell}^2}{m_{D_{(s)}^+}^2} \right)^2$$

Semi-Leptonic:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{2|4\pi^3|} |V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|^2,$$

Directly measurement : $|V_{cd(s)}| \ge f_{D(s)}$ or $|V_{cd(s)}| \ge FF$

- $\square \text{ Input } f_{D(s)} \text{ or } f^{k(\pi)}(0) \text{ from LQCD } \Rightarrow |V_{cd(s)}|$
- $\square \text{ Input } |V_{cd(s)}| \text{ from a global fit } \Rightarrow f_{D(s)} \text{ or } f^{k(\pi)}(0)$
- □ Validate LQCD calculation of Input f_{B(s)} and provide constrain of CKM-unitarity

D_(s) (Semi-)Leptonic decay

	BESIII	STCF	Belle II	
Luminosity	2.93 fb ⁻¹ at 3.773 GeV	1 ab ⁻¹ at 3.773 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$	5.1% _{stat} 1.6% _{syst} [8]	$0.28\%_{stat}$	_	
f_{D^+} (MeV)	2.6%stat 0.9%syst [8]	0.15% _{stat}	Theory · 0.2%	(0.1% expected)
$ V_{cd} $	$2.6\%_{stat} 1.0\%_{syst}^{*} [8]$	$0.15\%_{stat}$	mcor <u>y</u> . 0.270	(0.170 expected)
$\mathcal{B}(D^+ \to \tau^+ \nu_{\tau})$	20%stat 10%syst [9]	0.41%stat	_	
$\mathcal{B}(D^+ \to \tau^+ \nu_\tau)$	21% stat 13% sust [9]	0.50% at at	_	
$\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$		0.5070 stat		
Luminosity	3.2 fb ⁻¹ at 4.178 GeV	1 ab ⁻¹ at 4.009 GeV	50 ab ⁻¹ at $\Upsilon(nS)$	
$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$	2.8%stat 2.7%syst [10]	0.30%stat	0.8%stat 1.8%syst	
$f_{D_s^+}$ (MeV)	1.5%stat 1.6%syst [10]	0.15% _{stat}	Theory · 0.2%	(0.1% expected)
$ V_{cs} $	1.5%stat 1.6%syst [10]	$0.15\%_{stat}$	111eOly . 0.270	(U.170 expected)
$f_{D_s^+}/f_{D^+}$	3.0% _{stat} 1.5% _{syst} [10]	$0.21\%_{stat}$	-	
$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$1.9\%_{\mathrm{stat}} 2.3\%_{\mathrm{syst}}^{\dagger}$	0.24%stat	0.6%stat 2.7%syst	
$f_{D_s^+}$ (MeV)	$0.9\%_{\mathrm{stat}} 1.2\%_{\mathrm{syst}}^\dagger$	0.11% _{stat}	Theory : 0.2%	(0.1% expected)
$ V_{cs} $	$0.9\%_{\mathrm{stat}}1.2\%_{\mathrm{syst}}^\dagger$	$0.11\%_{stat}$	_	-
$\overline{f}_{D_s^+}^{\mu\&\tau}$ (MeV)	$0.9\%_{\mathrm{stat}}1.0\%_{\mathrm{syst}}^{\dagger}$	$0.09\%_{stat}$	$0.3\%_{stat}$ $1.0\%_{syst}$	
$ \overline{V}_{cs}^{\mu\& au} $	$0.9\%_{stat} 1.0\%_{syst}^{\dagger}$	$0.09\%_{stat}$	_	
$\frac{\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})}{\mathcal{B}(D_s^+ \to \mu^+ \nu_{\mu})}$	$3.6\%_{stat}3.0\%_{syst}^{\dagger}$	0.38%stat	0.9%stat 3.2%syst	

* assuming Belle II improved systematics by a factor 2

Stat. uncertainty is closed to theory precision Sys. is challenging

Determination of γ/ϕ_3 angle

\Box The cleanest way to extract γ is from $B \rightarrow DK$ decays:

- Interference between tree-level decays; theoretically clean
- current uncertainty $\sigma(\gamma) \sim 5^0$
- however, theoretical relative error $\sim 10^{-7}$ (very small!)
- □ Information of *D decay strong phase* is needed
 - Best way is to employ quantum coherence of DD production at threshold

Photon polarization in $b \rightarrow s\gamma$

Y. L. Fan, et al., arXiv:2107.06118

- In $b \rightarrow s\gamma$, the photon is left-handed under SM prediction. Many NP models have predicted a significant right-handed component of photon.
- A novel method is proposed by combine $B \to K_{res}(\to K\pi\pi)\gamma$ and $D^0 \to K_{res}ev_e$ to obtain the photon polarization model-independently (*W. Wang et al., PRL. 125, 051802 (2020)*).

Fig. 5 Efficiency corrected signal yields in bins of $\cos \theta_K$ (left) and $\cos \theta_l$ (right). The curve is the result of fit using polynomial function.

$$\delta A'_{ud} = 1.5 \times 10^{-2}$$

For details, see the talk by Yulan Fan tomorrow: https://indico.ihep.ac.cn/event/10906/session/5/contribution/343

Polarization of Λ hyperons and CPV

Nature Phys. 15, 631–634 (2019)

1.31 B J/ ψ events Quantum correlation in Λ pair

Parameters	This work	Previous results
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴
$\Delta \Phi$	$(42.4\pm 0.6\pm 0.5)^\circ$	_
α_{-}	$0.750 \pm 0.009 \pm 0.004$	$0.642\pm 0.013\ ^{\rm 16}$
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 \pm 0.08 ~^{\rm 16}$
$\bar{\alpha}_0$	$-0.692\pm 0.016\pm 0.006$	-
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	$0.006 \pm 0.021 \ ^{\rm 16}$
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	
	2% level CPV test SM pred	sensitivity for iction: $10^{-4} \sim 10^{-5}$
	CP test $A_{CP} = \frac{a}{a}$	$\alpha_{-} - \alpha_{+}$

CPV in Hyperon Decays at STCF

- 4 trillion J/ ψ events $\Rightarrow A_{CP} \sim 10^{-4}$
 - Luminosity optimized at J/ψ resonance
 - Luminosity of STCF: \times 100
 - 2 3 years data taking
 - No polarization beams are needed

- Beam energy trick
 - \Rightarrow small beam energy spread
 - \Rightarrow J/ ψ cross-section: \times 10 \Rightarrow $A_{CP} \sim 10^{-5}$?
- □ Challenge: Systematics control, spin procession effect in magnet

CPV in τ decay

H. Y. Sang, et al., Chin. Phys. C 45, 053003 (2021)

 \succ The CPV source in $K^0 - \overline{K}^0$ mixing produces a difference in tau decay rate

In Theory:
$$A_Q = \frac{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) - B(\tau^- \to K_S^0 \pi^- \nu_\tau)}{B(\tau^+ \to K_S^0 \pi^+ \bar{\nu}_\tau) + B(\tau^- \to K_S^0 \pi^- \nu_\tau)} = (+0.36 \pm 0.01)\%$$

BaBar experiments : $A_{CP}(\tau^- \to K_S \pi^- \nu \geq 0\pi^0) = (-0.36 \pm 0.23 \pm 0.11)\%$

 2.8σ away from the SM prediction

Theorist try to reconcile the deviation, but not coverage even NP included

Flavor Physics and CP violation

Physics at STCF	Benchmark Processes	Key Parameters*	Remarks
CKM matrix	$D^+_{(s)} \rightarrow l^+ \nu_l, D \rightarrow P l^+ \nu_l$	$\delta V_{cd/cs} \sim 0.15\%; \ \delta f_{D/D_s} \sim 0.15\%$	Leading role
γ/ϕ_3 measurement	$D^0 \to K_s \pi^+ \pi^-, K_s K^+ K^- \dots$	$\begin{array}{l} \Delta(\cos\delta_{\mathrm{K}\pi}) \sim 0.007;\\ \Delta(\delta_{\mathrm{K}\pi}) \sim 2^{\mathrm{o}} \end{array}$	Synergy with BelleII/LHCb
$D^0 - \overline{D}^0$ mixing	$\begin{split} \psi(3770) &\to (D^0 \overline{D}{}^0)_{CP=-}, \\ \psi(4140) &\to \gamma (D^0 \overline{D}{}^0)_{CP=+} \end{split}$	$\Delta x \sim 0.035\%;$ $\Delta y \sim 0.023\%$	In Competition with BelleII/LHCb
Charm hadron decay	$D_{(s)}, \Lambda_c^+, \Sigma_c, \Xi_c, \Omega_c$ decay	$N_{D/D_s/\Lambda_c} \sim 10^9 / 10^8 / 10^8$	Leading role
γ polarization	$D^0 \to K_1 e^+ \nu_e$	$\Delta A'_{UD} \sim 0.015$	Synergy with BelleII/LHCb
CPV in Hyperons	$J/\psi ightarrow \Lambda\overline{\Lambda}, \Sigma\overline{\Sigma,}\Xi^{-}\overline{\Xi}^{-}, \Xi^{0}\overline{\Xi}^{0}$	$\Delta A_A \sim 10^{-4}$	Leading role
CPV in $ au$	$\tau \to K_s \pi \nu$, EDM of τ , $\tau \to \pi/K \pi^0 \nu$ for polarized e^-	$\Delta A_{\tau \to K_s \pi \nu} \sim 10^{-3};$ $\Delta d_{\tau} \sim 5 \times 10^{-19} \text{ (e cm)}$	In Competition with BelleII
CPV in Charm	$ \begin{split} D^0 &\to K^+ K^- / \pi^+ \pi^-, \\ \Lambda_c &\to p K^- \pi^+ \pi^0 \dots \end{split} $	$\Delta A_D \sim 10^{-3};$ $\Delta A_{\Lambda_c} \sim 10^{-3}$	In Competition with BelleII/LHCb

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Highlighted physics at STCF

QCD and Hadronic Physics

- Exotic states and hadron spectroscopy
- ≻ Hadron structures
- Precision test of SM parameters

□Flavor Physics and CP violation

CKM matrix, $D^0 - \overline{D}^0$ mixing CP violation in lepton, hyperon

DNew Physics Search

- ≻ Rare/Forbidden
- ➢ Dark particle search

LFV decay of $\tau \rightarrow lll$ at STCF

- ▶ Signal side: $\tau \rightarrow 3 leptons$
- ➤ Tag side: $\tau \rightarrow ev\bar{v}$, $\mu v\bar{v}$, $\pi v + n\pi^0$ (Br = 82%)
- ➤ Almost background free, the sensitivity : \mathcal{B}_{UL}^{90} ($\tau \rightarrow \mu \mu \mu$)~1/L
- Sest efficiency ($\tau \rightarrow \mu \mu \mu$): 22.5% (including tag branching fraction)

$$\Rightarrow \text{ STCF with 1ab}^{-1}:$$
$$\mathcal{B}_{UL}^{90}(\tau \to \mu\mu\mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.5 \times 10^{-9}$$

LFV decay of $\tau \rightarrow \gamma \mu$ at STCF

Signal side τ → γμ
Tag side: τ → evv, πv, ππ⁰v(Br = 54%)
Dominant background: e⁺e⁻ → μ⁺μ⁻ and e⁺e⁻ → τ⁺τ⁻, τ⁺ → ππ⁰v, τ⁻ → μvv

TABLE II. Optimization for pion/muon separation.

	μ eff. at 1 GeV	$UL(\mathcal{B}(\tau \to \gamma \mu))/10^{-8}$
3%	96.7%	1.2
1.7%	92.6%	1.5
1%	87.3%	1.8

MVA overtraining check for classifier: BDT

$$> STCF with 1ab-1: $\mathcal{B}_{UL}^{90}(\tau \to \gamma \mu) < \frac{N_{UL}^{90}}{2\epsilon N_{\tau\tau}} \sim 1.2 \times 10^{-8}$$$

Forbidden/Rare decay and New Particle Search

Physics at STCF	Benchmark Processes	Key Parameters* (U.L. at 90% C.L.)	Remarks
FLV decays	$\begin{split} \tau &\to \gamma l, lll, lP_1P_2\\ J/\psi &\to ll', D^0 \to ll'(l' \neq l) \dots \end{split}$	$\mathcal{B}(\tau \to \gamma \mu / \mu \mu \mu) < 12/1.5 \times 10^{-9};$ $\mathcal{B}(J/\psi \to e\tau) < 0.71 \times 10^{-9}$	In Competition with BelleII
LNV, BNV	$\begin{split} D^+_{(s)} &\to l^+ l^+ X^-, J/\psi \to \Lambda_c e^-, \\ B &\to \overline{B} \dots \end{split}$	$\mathcal{B}(J/\psi\to\Lambda_c e^-)<10^{-11}$	Leading role
Symmetry violation	$\eta^{(\prime)} ightarrow ll \pi^0, \eta^\prime ightarrow \eta ll \dots$	$\mathcal{B}(\eta' \rightarrow ll/\pi^0 ll) < 1.5/2.4 \times 10^{-10}$	Leading role
FCNC	$\begin{split} D &\to \gamma V, D^0 \to l^+ l^-, e^+ e^- \to D^*, \\ \Sigma^+ &\to p l^+ l^- \dots \end{split}$	$\mathcal{B}(D^0 \to e^+ e^- X) < 10^{-8}$	In Competition with BelleII
Dark photon, millicharged	$\begin{split} e^+e^- &\to (J/\psi) \to \gamma A'(\to l^+l^-) \dots \\ e^+e^- &\to \chi \bar{\chi} \gamma \dots \end{split}$	Mixing strength $\Delta \epsilon_{A'} \sim 10^{-4}$; $\Delta \epsilon_{\chi} \sim 10^{-4}$	Synergy with BelleII/

*Sensitivity estimated based on $\mathcal{L} = 1 \text{ ab}^{-1}$

Summary of physics program at STCF

2021年超级陶粲装置研究进展研讨会

- ▶时间:2021年12月9日至13日
- ▶地点:中山大学广州校区
- ▶会议注册网站:

<u>http://cicpi.ustc.edu.cn/indico/conferenceDisplay.py?confld=3752</u>
>会议联系人:

耿聪(中山大学), <u>gengc@mail.sysu.edu.cn</u> 周小蓉(中国科学技术大学), <u>zxrong@ustc.edu.cn</u> 尤郑昀(中山大学), <u>youzhy5@mail.sysu.edu.cn</u> 吕晓睿(中国科学院大学), <u>xiaorui@ucas.ac.cn</u> 彭海平(中国科学技术大学), <u>penghp@ustc.edu.cn</u>

Thanks for your attention! Welcome to join the effort!