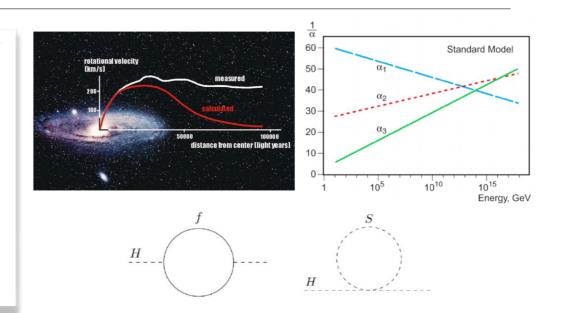
Searches for electroweak production of supersymmetric particles with ATLAS

Da XU (IHEP, CAS) Qingdao Online, 2021


Institute of High Energy Physics Chinese Academy of Sciences

Supersymmetry

A theory to describe physics beyond *Standard Model* • Introduce an additional symmetry: fermions ~ bosons

It can

- Offer a Dark Matter candidate
- Possible unification of inverse gauge coupling
- \cdot Solve the fine-tuning problem of the Higgs mass

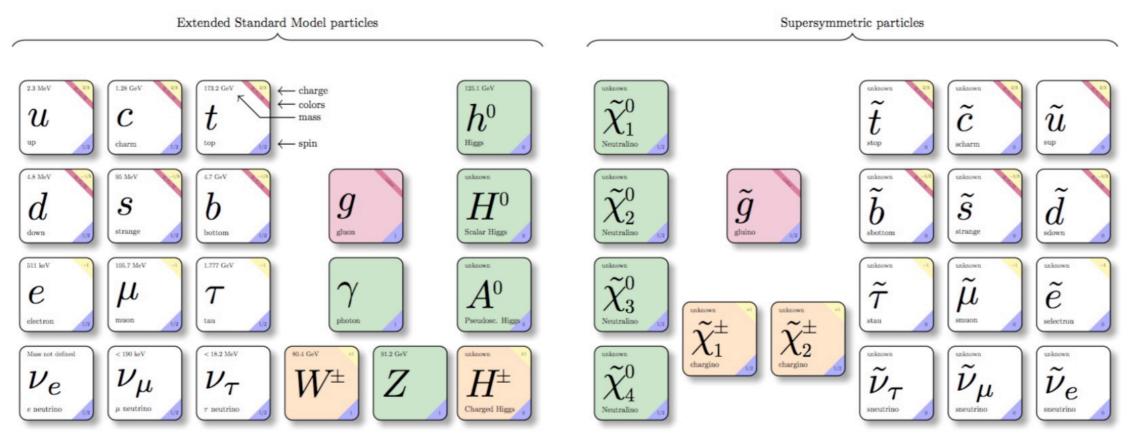
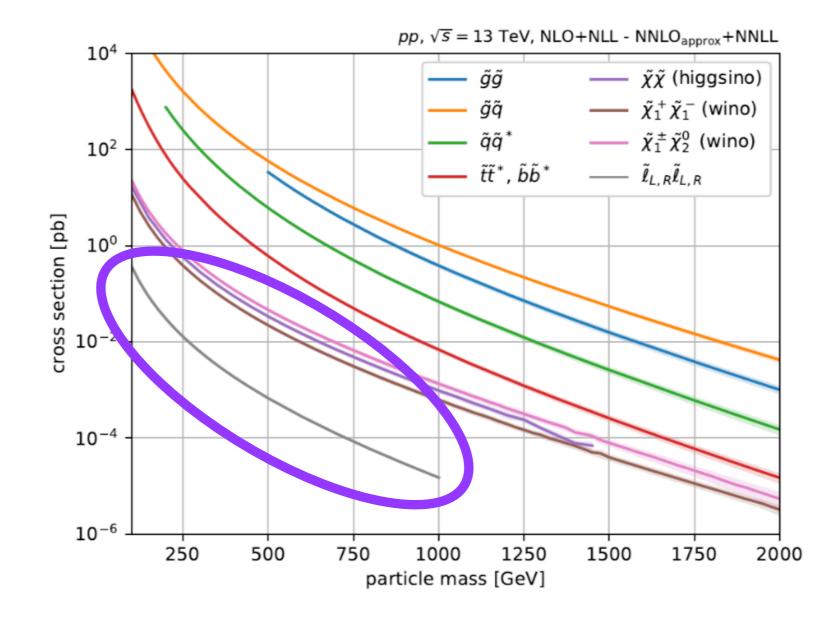
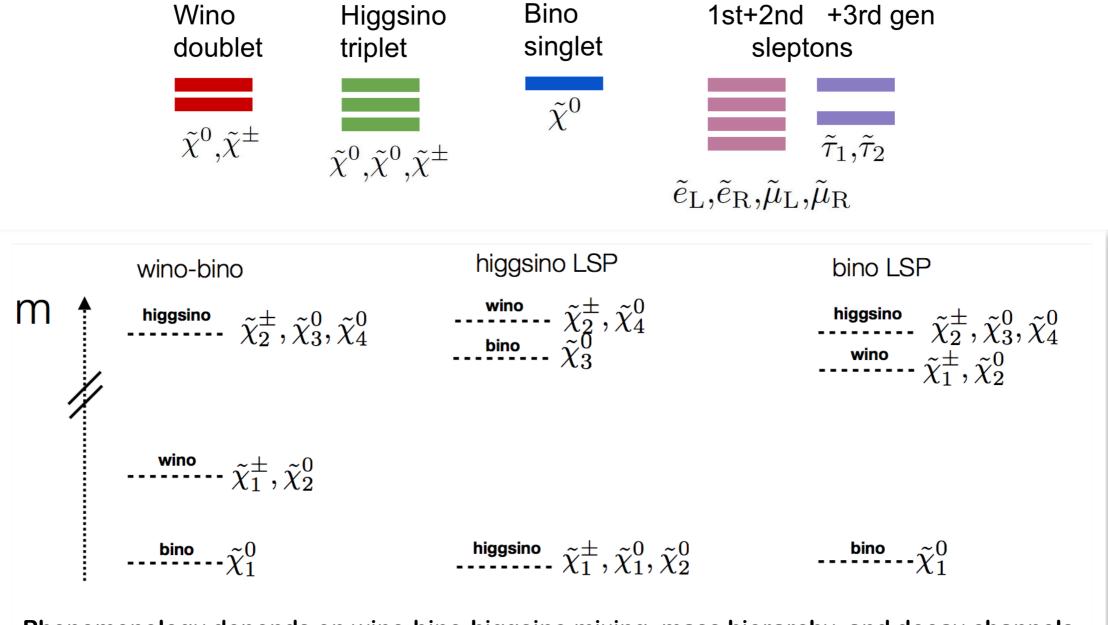
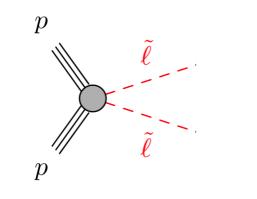
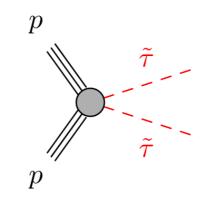



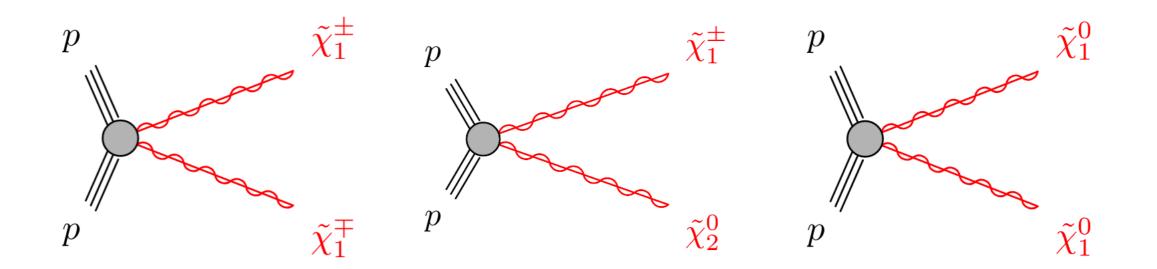
Image credit: M. Rimoldi


The SUSY production @ 13TeV

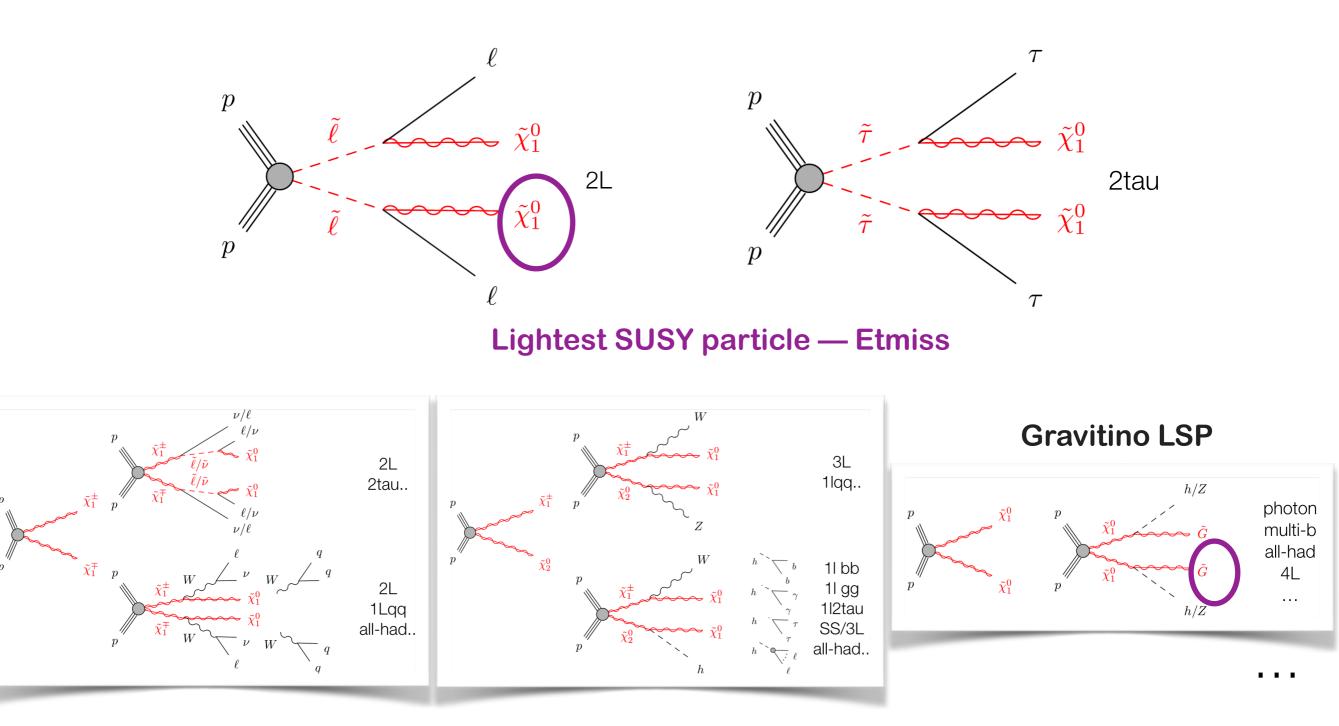
Electroweak SUSY: smaller cross-section; less jet activity —> cleaner signature.


The electroweak SUSY search

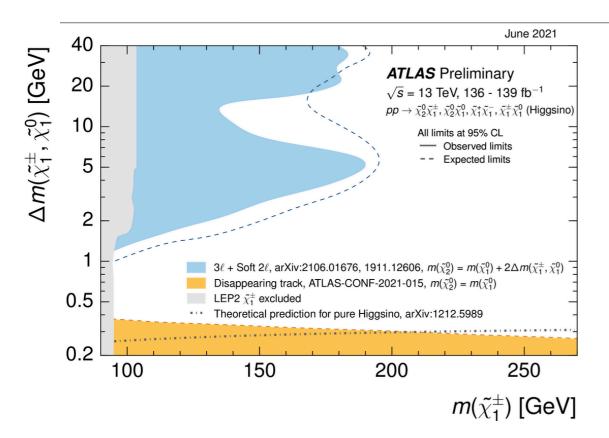

Production of Charginos/Neutralinos/sLeptons



Phenomenology depends on wino-bino-higgsino mixing, mass hierarchy, and decay channels.


Benchmark EWK scenarios

Benchmark EWK scenarios

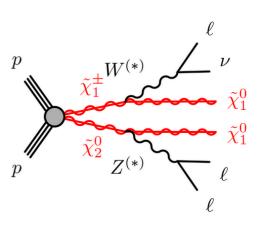


The EWK SUSY program in ATLAS

	Published Signature	Scenario	Publication		
	2L0J	C1C1-WW/slepton; Slepton pair	arXiv:1908.08215		
	1lbb	C1N2-Wh	arXiv:1909.09226		
	Stau	Stau pair	arXiv:1911.0666 arXiv:1911.12606		
	Compressed	C1N2-WZ; Slepton pair			
	3LeRJR	C1N2-WZ	arXiv:1912.08479		
	Photon	C1N2-Wh; GGM	arXiv:2004.10894		
	3L RPV	C1C1/C1N1 via RPV coupling	arXiv:2011.10543		
ew sinc	e 2021 4L	C1N2/C1C1; Slepton pair; GGM	arXiv:2103.11684		
	3L conv/RJ	C1N2-WZ/Wh	arXiv:2106.01676		
	All hadronic	C1N2/C1C1-WZ/Wh/WW; GGM	ATLAS-CONF-2021-022		

Each benchmark scenario will be discussed and the fresh results are preferred in this talk. Reminder: more signatures are still in processing: **2L2J**; multi-b; SS; bbyy... More to come!

Higgsino search

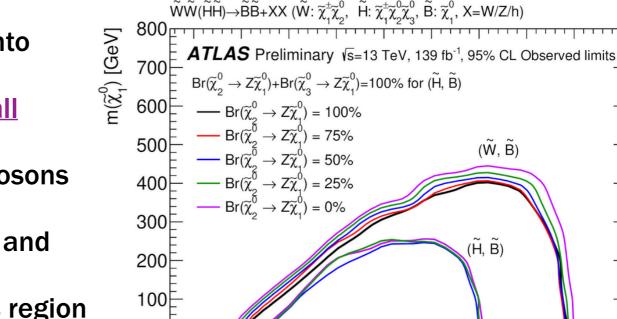

Standard Higgsino search, where

- Mass splitting is very small
- Off-shell W/Z bosons emitted
- Final states with <u>three el/mu</u> or <u>ISR+two soft el/mu</u>
- Introduced a new machine-learning identification for soft el/mu

0

300

Explore dM down to ~1-2GeV


900 1000 1100 1200

m(ĩ̃,≞) [GeV]

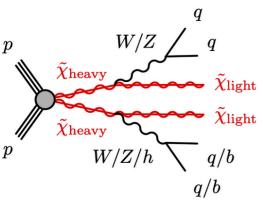
higgsino $ilde{\chi}_1^\pm, ilde{\chi}_1^0, ilde{\chi}_2^0$

higgsino LSP

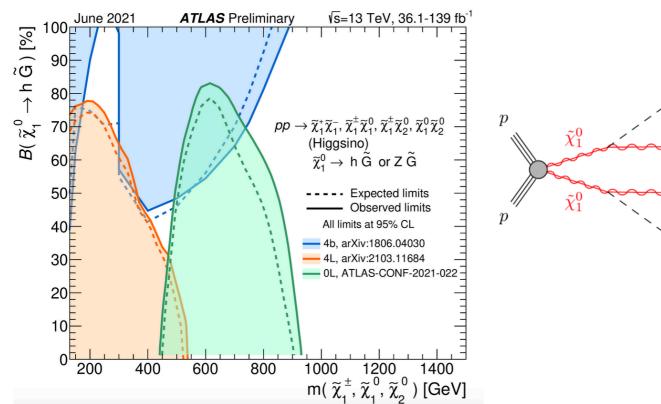
m

500

600


700

800


400

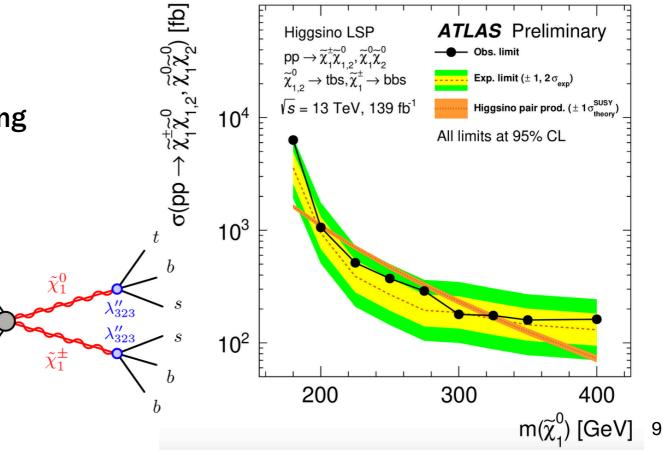
NEW! Heavier Higgsino decays into lighter one

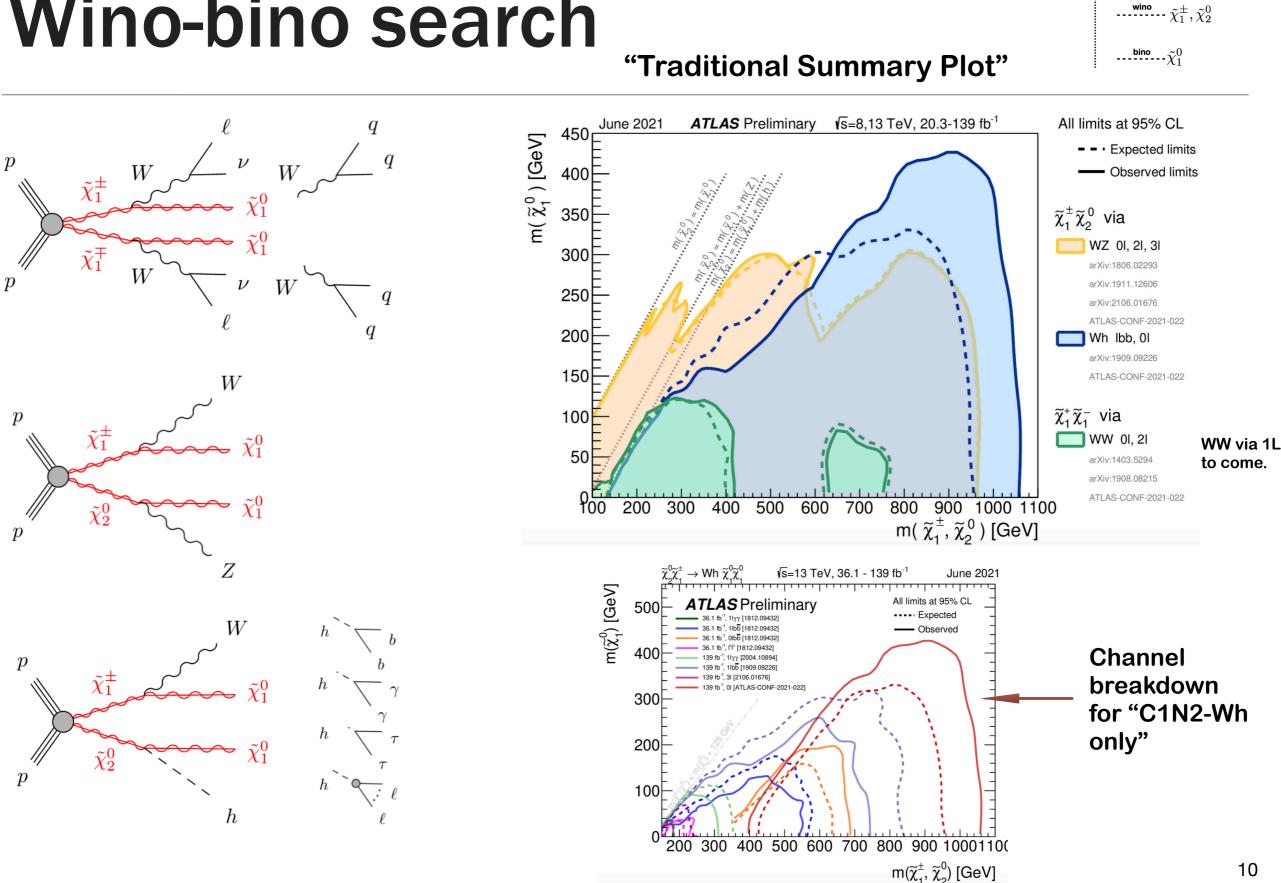
- Boosting the sensitivity using <u>all</u> <u>hadronic decays (OL)</u>
- Study the highly-boosted SM bosons with jet substructure info. —> Effective boson reconstruction and
 - bkg suppression
- Probe the higgsinos high mass region unprecedentedly -> 900 GeV

Higgsino search

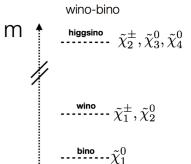
Higgsino decays into SM quarks via RPV coupling

- Final states with 6-8 jets, at least three bjets
- Extreme topologies studied with data-driven approach
- $\cdot\,$ Neural-net classifier to distinguish signal
- \cdot Excluded higgsino masses 200-320 GeV
- <-- first since LEP result in 2004</p>

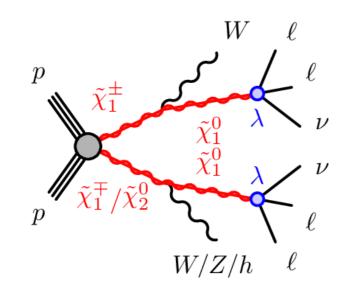

NEW! Higgsino NLSP decays into Z/H and Gravitino LSP


- For Higgs dominant decay mode, <u>4b</u> channel wins
 - For Z dominant decay mode

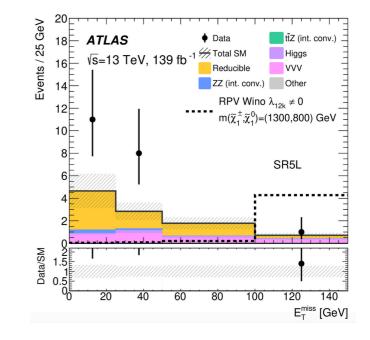
h/Z

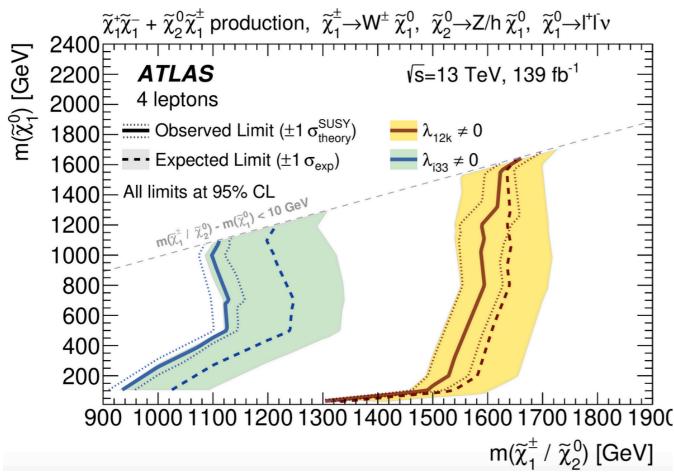

h/Z

- Low mass region: <u>4L</u> channel wins
- High mass region: <u>OL</u> wins (w/ boost strategy)

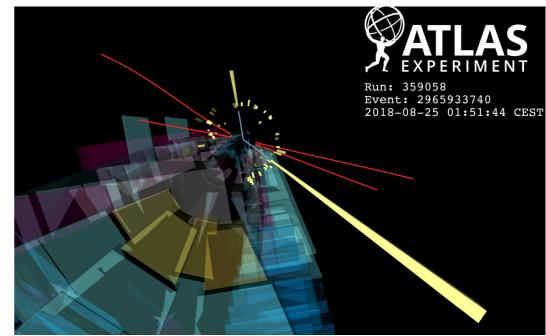


Wino-bino search

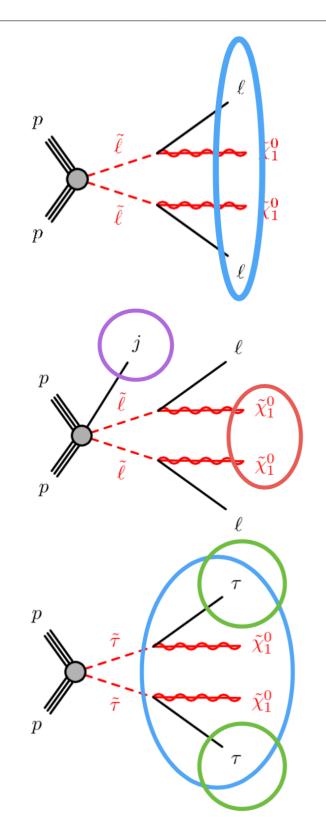

Wino-bino search

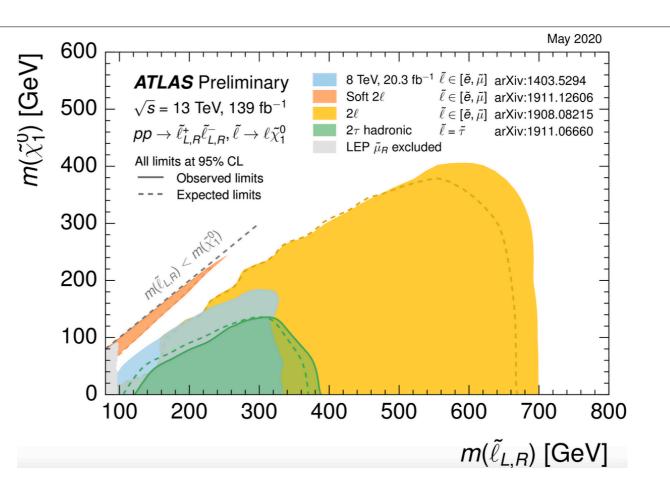


NEW! "4L Analysis"


RPC wino production,
 followed by the RPV decay of
 the χ₁⁰ LSP

- SR with at least 4L with up to two hadronically decaying т
- First look of SR5L





Visualisation of a 6-lepton event which falls within SR5L. The event consisted of 4 muons+ 2 electrons.


Slepton search

- Search 1: Final states with <u>2 hard el/mu</u> (pT>25GeV) —> target high mass region!
- Search 2: <u>Compressed</u> analysis <u>2 soft el/mu</u> (pT_e>4.5GeV and pT_mu>3GeV) + <u>ISR-jet</u> —> target small mass splitting region!
- Search 3: <u>2 hadronic tau</u> analysis improvement in tau trigger with improved tau ID.

Smuon search

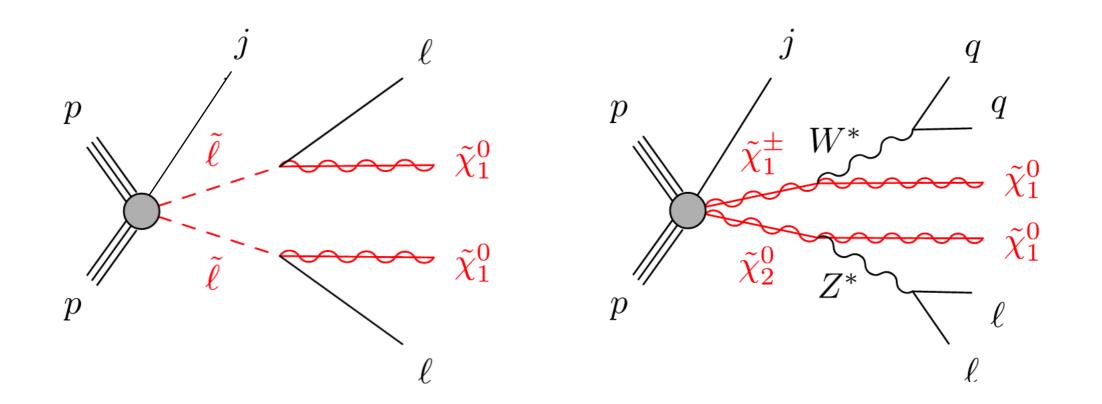
"New Smuon Summary"

- Shaded bands indicate regions compatible with the observed g-2 anomaly
- $\begin{array}{l} \bullet \quad \text{Low/High mass smuon region is} \\ \textbf{favored for small/large tan } \beta \end{array} \end{array}$
- Uncovered space in the small dM region
- Need to ensure that our searches cover the full mass plane!

Summary

- * A short overview on the recent ATLAS Electroweak Supersymmetry results is presented with full Run2 data analyzed.
- * No discovery yet, the limits are probed in new/challenge scenarios. Various novel techniques are developed/under development.
- * More challenge signatures to come.
- * More excitingly, the EWK combination & the pMSSM interpretation are in process & to come next year. Hopefully more new ideas will be inspired!

Extra slides


ATLAS SUSY Searches* - 95% CL Lower Limits

June 2021

	Model	Siç	gnature	e ∫∠	<i>dt</i> [fb ⁻	Mass limit				Reference	
5	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$	0 e.µ mono-jet	2-8 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1		1.0 0.9	1.85	m(ℓ̂ ⁰ ₁)<400 GeV m(ℓ̂)-m(ℓ̂ ⁰ ₁)=5 GeV	2010.14293 2102.10874	
Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\ell}_{1}^{0}$	0 e.µ	2-6 jets	E_T^{miss}	139	2 2	Forbidden	2.3		2010.14293 2010.14293	
Iclusive	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} W \tilde{\chi}_{1}^{0}$		2-6 jets		139	2		2.2	m($\tilde{\ell}_1^0)$ <600 GeV	2101.01629	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{\ell}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\ell}_1^0$	ee, μμ 0 e, μ	2 jets 7-11 jets	E_T^{miss} E_T^{miss}	36.1 139	R R		1.2	$m(\tilde{\chi}) \cdot m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$	1805.11381 2008.06032	
		SS e, µ	6 jets		139	8		.15	m@)-m($\tilde{\ell}_1^0$)=200 GeV	1909.08457	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{X}_{1}^{0}$	0-1 e,μ SS e,μ	3 b 6 jets	E_T^{miss}	79.8 139	6 ile		1.25	m(ℓ ⁰ ₁)<200 GeV m(ĝ)-m(ℓ ⁰ ₁)=300 GeV	ATLAS-CONF-2018-041 1909.08457	
	$b_1 \bar{b}_1$	0 e, µ	2 b	E_T^{miss}	139	$\frac{\delta_1}{\delta_1}$	0.68	1.255	m(λ ⁰ ₁)<400 GeV 10 GeV<∆m(δ ₁ ,λ ⁰)<20 GeV	2101.12627 2101.12627	
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{t}_2^0 {\rightarrow} b b \tilde{t}_1^0$	0 e,μ 2τ	6 b 2 b	E_T^{miss} E_T^{miss}	139 139	δ ₁ Forbidden δ ₁	0.13-0.85	.23-1.35	$\operatorname{Sm}(\tilde{\ell}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\ell}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\ell}_{2}^{0}, \tilde{\ell}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\ell}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 ATLAS-CONF-2020-031	
aluct	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{k}_1^D$	0-1 e,µ	\geq 1 jet	E_T^{miss}	139	ī,		1.25	m(ℓ ⁰ ₁)=1 GeV	2004.14060,2012.03799	
prog	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{k}_1^0$		3 jets/1 b 2 jets/1 b	E_T^{miss} E_T^{miss}	139	ř _i Forbidde			m(\$1)=500 GeV m(\$1)=800 GeV	2012.03799	
e de	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	1-2 τ 0 e,μ	2 1015/10		139 36.1	2	Forbldden 0.85	1.4	m(x ₁)=800 GeV	ATLAS-CONF-2021-008 1805.01649	
ж, щ		0 e.µ	mono-jet	E_T^{miss} E_T^{miss}	139	Ĩ.	0.55		$m(\tilde{t}_1,\tilde{c})\cdot m(\tilde{t}_1^0)=5 \text{ GeV}$	2102.10874	
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{k}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 e, µ	1-4 b	E_T^{miss}	139	T ₁	0.067-		m($\hat{\ell}_2^0$)=500 GeV	2006.05880	
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e,µ	1.6	E_T^{miss}	139	72 Forbidder			$n(\tilde{x}_{1}^{0})=360 \text{ GeV}, m(\tilde{r}_{1})-m(\tilde{x}_{1}^{0})=40 \text{ GeV}$	2006.05880	
	$\tilde{x}_1^{\pm} \tilde{x}_2^0$ via WZ	Multiple ℓ/jets ee, μμ	≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	$\hat{\chi}_{1}^{a}/\hat{\chi}_{2}^{b}$ $\hat{\chi}_{1}^{\pm}/\hat{\chi}_{2}^{b}$ 0.205	0.96		$m(\tilde{\ell}_1^0)=0$, wino-bino $m(\tilde{\ell}_1^0)=m(\tilde{\ell}_1^0)=5$ GeV, wino-bino	2106.01676, ATLAS-CONF-2021-022 1911.12606	
	$\hat{x}_1^{\pm} \hat{x}_1^{\mp}$ via WW	$2 e, \mu$		E_T^{miss}	139	x [±] ₁ 0.42			m(E1)=0, wino-bino	1908.08215	
	$\tilde{x}_1^{\pm} \tilde{x}_2^0$ via Wh	Multiple <i>l</i> /jets		E_T^{miss}	139	\$1182 Forbidden	1.0	6	m(x1)=70 GeV, wino-bino	2004.10894, ATLAS-CONF-2021-022	
EV direct	$\tilde{x}_{1}^{\pm} \tilde{x}_{1}^{\mp}$ via \tilde{l}_{L}/\tilde{v} $\tilde{r}\bar{\tau}, \tilde{r} \rightarrow r \tilde{x}_{1}^{0}$	2 e.μ 2 τ		E_T^{miss} E_T^{miss}	139 139	x [±] τ [τ _L , τ _{R,L}] 0.16-0.3 0.12-0.39	1.0		$m(\tilde{\ell}, \tilde{r})=0.5(m(\tilde{\ell}_{1}^{+})+m(\tilde{\ell}_{1}^{0}))$ $m(\tilde{\ell}_{1}^{0})=0$	1908.08215 1911.06660	
шé	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e.µ ee.µµ	0 jets ≥ 1 jet	Eniss Eniss	139 139	i i 0.256	0.7		$m(\tilde{t}_{1}^{0})=0$ $m(\tilde{t}_{1}^{0})=10 \text{ GeV}$	1908.08215 1911.12605	
	$\hat{H}\hat{H}, \hat{H} \rightarrow h\hat{G}/2\hat{G}$	0 e, µ	≥ 3 b		36.1	II 0.13-0.23	0.29-0.88		$BR(\vec{k}_1^0 \rightarrow h\vec{G})=1$	1805.04030	
	tini ti suojeo	4 6.41	0 jets 2 large jets	Emiss Emiss	139 139	Ĥ	0.55		$BR(\tilde{x}_{1}^{d} \rightarrow ZG)=1$	2103.11684 ATLAS-CONF-2021-022	
		<i>σε,μ</i> ≥	2 large jee	• r.T	128	B	0.45-0.93		$BR(\tilde{\epsilon}_1^0 \rightarrow ZG)=1$	AILAS-CONF-2021-022	
pe s	$Direct \hat{\mathcal{X}}_1^* \hat{\mathcal{X}}_1^-$ prod., long-lived $\hat{\mathcal{X}}_1^\pm$	Disapp. trk	1 jet	E_T^{miss}	139	$ \frac{\hat{x}_{1}^{\pm}}{\hat{x}_{1}^{\pm}} = 0.21 $	0.66		Pure Wino Pure higgsino	ATLAS-CONF-2021-015 ATLAS-CONF-2021-015	
-lived Icles	Stable § R-hadron		Multiple		36.1	8		2.0		1902.01535,1808.04095	
Long	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{k}_1^0$		Multiple		36.1	$\tilde{g} = [\pi(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$		2.05 2	1 12	1710.04901,1808.04095	
7 0	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{G}$	Displ. lep		E_T^{miss}	139	ē, μ̃ ? 0.34	0.7		$\pi(\tilde{\ell}) = 0.1 \text{ ms}$ $\pi(\tilde{\ell}) = 0.1 \text{ ms}$	2011.07812 2011.07812	
	$\hat{x}_1^{\pm} \hat{x}_1^{\mp} / \hat{x}_1^0$, $\hat{x}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e,µ			139	$\hat{\chi}_{1}^{\mp}/\hat{\chi}_{1}^{0} = [BB(Z_{T})=1, BB(Z_{T})=1]$	0.625 1.0	5	Pure Wino	2011.10543	
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW / Z\ell\ell\ell\ell\nu\nu$	4 e.µ	0 jets	E_T^{miss}	139	$\tilde{X}_{1}^{+}/\tilde{X}_{2}^{0} = [\lambda_{03} \neq 0, \lambda_{124} \neq 0]$	0.95	1.55	m(k ⁰)=200 GeV	2103.11684	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$		5 large jet: Multiple	5	36.1	# [m(t ² ₁)=200 GeV, 1100 GeV] 7 [X ² ₁₂₃ =2e-4, 1e-2]		1.3 1.9	Large 3 ^v ₁₁₂	1804.03568 ATLAS-CONF-2018-003	
RPV	$\tilde{t}i, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$ $\tilde{t}i, \tilde{t} \rightarrow b \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$		$\geq 4b$		36.1 139	7 Forbidde	0.55 1.0 m 0.95		m(\bar{k}_{1}^{0})=200 GeV, bino-like m(\bar{k}_{1}^{\pm})=500 GeV	2010.01015	
CC	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2	2 jets + 2 b		36.7	i [qq, bx] 0.42	0.61		111-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1710.07171	
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e,μ 1 μ	2 b DV		36.1 136	\tilde{t}_1 $\tilde{t}_1 = [1e-10 < X_{ray} < 1e-8, 3e-10 < X_{ray} < 3e-9]$	1.0	0.4-1.45	$BR(i_1 \rightarrow be/by) > 20\%$ $BR(i_1 \rightarrow qy) = 100\%, \cos\theta_i = 1$	1710.05544 2003.11956	
	$\tilde{\chi}_1^*/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 {\rightarrow} tbs, \tilde{\chi}_1^+ {\rightarrow} bbs$	1-2 e,μ	≥6 jets		136	x ⁰ ₁ 0.2-0.32	1.0	1.0	BH(µ,→qµ)=100%, cosh=1 Pure higgsino	ATLAS-CONF-2021-007	
Only	a appartian of the qualitable me	an limite on a	ou alata			0 ⁻¹				1	
phen	Only a selection of the available mass limits on new states or 10 ⁻¹ 1 Mass scale [TeV] phenomena is shown. Many of the limits are based on simulified models of role for the assumptions made										

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

EWK signatures — "Compressed"

Compressed scenario targets very small mass splittings dM(sl/C1/N2, N1); Taking advantage of softer leptons, ISR jets, VBF jets etc.