The study of the longitudinal development of muons in air shower Liping Wang^{1,2}, Lingling Ma², Cunf eng Feng¹ Institute of Frontier and Interdisciplinary science Shandong University, Qingdao, China 2 Key Laboratory of Particle Astrop.hysics, Institute of High Energy Physics, CAS, Beijing, China

Outline

Physical motivation

Introduction to MC simulation data

Reconstruction of Muon Production Depth(MPD)

Features of the muon profiles

Summary

Physical Motivation

□ Muon production in air shower

✓ The main contributors to the muon component in air showers are charged pions (π^+, π^-) and kaons (K^+, K^-, K_L^0) , but also charmed particles, such as $D^{\pm}, D^0, J/\psi$ and others $p + N(or A) \rightarrow p + N(or A) + n\pi^{\pm,0} + X$

$$\pi^{\pm} \rightarrow \mu^{\pm} + (\overline{v_{\mu}})$$

✓ Longitude development of muons preserves the information of primary particles and plays an important role in the study of composition identification with energy 10¹⁵ eV-10¹⁶ eV.

D Purpose to study muon

- \checkmark Measure the cosmic ray energy spectrum and mass composition around knee region
- \checkmark Helps to study the hadronic interaction model
- \checkmark Provide insight on whether new physics phenomena take place

Physical Motivation

➢ Method 1: By tracking the trajectories of the detected muon

- > KASCADE-Grande (reaches up to 10^{18} eV)
- Method 2: By mapping the arrival time of muons far from the core onto muon production distance.
 - > Pierre Auger Observatory(reaches up to 10^{20} eV)

Fig. 11: The mean of $\sigma(X_{\text{max}}^{\mu}(\text{reconstructed}) - X_{\text{max}}^{\mu}(\text{MC}))$ is shown as a function of energy, for the angular range $\theta = 45^{\circ} - 55^{\circ}$ (left) and $\theta = 55^{\circ} - 65^{\circ}$ (right).

Introduction to MC simulation data

Simulation with CORSIKA (v76400)

- > EPOS+GHEISHA
- > Zenith angle(θ): fixed 45°
- > Altitude: $4410m (X = 600g/cm^2)$
- Energy: 10PeV; 5PeV; 1PeV
- MUPROD: additional information of muon

Number of shower	10PeV	5PeV	1PeV
Proton	1000	2000	2000
Iron	1000	2000	2000

* In order to ensure the shower full development, the zenith angle is selected as 45°

- \succ Correction by the path traveled by the parent mesons : $t_{\pi} \sim 3ns$
- \succ Considering geometric delay as : t_g
- $\succ \quad \overline{AB} = \sqrt{\overline{BC}^2 + (\overline{AO} \overline{BB'})^2}$
- $\succ \quad \overline{AB} = \overline{AC} + c \times t_g$

$$\overline{AO} = \frac{1}{2} \left(\frac{\overline{BC}^2}{c \times (t_g)} - c \times (t_g) \right) - c \times t_{\pi}$$

Muon production vertex

✓ Approximation I: The muons are produced on the shower axis

- * production point of most muons is confined to a cylinder with a radius of 10m
- * Δ is mainly concentrated within 0.2°.

Muon propagation

- r:distance from muon position on ground to core on SFP
- t_{total}: total time delay
- t_g: geometric delay
- t_{ϵ} : kinematic delay
- t_B: geomagnetic delay
- t_{Rem}:multiple scattering

* $t_B + t_{Rem} < t_{total} \times 10\%$ when r>400m * t_g is the dominated when r>400m

Muon propagation

kinematic time delay distributions for showers with different compositions and energies can be fitted with an exponential function:

$$t_{\epsilon} = \exp(-0.57 + 1.276 \times \log_{10}(r))$$

✓ Approximation III:
$$t_g = t_{total} - t_e$$

Features of the muon profiles

• Fit the longitudinal profile of the muon(Proton with energy 10PeV)

Sampling criteria: 1) 400m<r<1000m (2) Muon energy>1GeV

Fit formula:
$$\frac{dN}{dX} = N_{max}(1 + \frac{R}{L}(X - X_{max}^{\mu}))^{R^{-2}} exp^{-\frac{X - X_{max}^{\mu}}{LR}}$$

Features of the muon profiles

* As the time resolution increases, the bias is increasing and the rms is almost constant

Features of the muon profiles

• Distribution of X_{max}^{μ} of different component

Summary

Summary

- The longitude development in the air shower and X_{max}^{μ} can be reconstructed according the geometry effect.
- The reconstructed resolution of X_{max}^{μ} is almost constant by different time resolution,
- X_{max}^{μ} can be used to identify mass compositions of cosmic rays.
- Measure lnA by learning the longitudinal development of muons

不加时间分辨率

Back Up

0ns时间分辨率

